Datalake VS. Datawarehouse, quelle architecture de stockage choisir ?

Alors que les volumes des données collectées croient de manière exponentielle dans une variété de formats considérable, vous devez choisir comment les stocker. Devez-vous opter pour un lac de données (datalake) ou pour un entrepôt de données (datawarehouse) ? Cette décision n’est pas anodine car elle influence l’architecture globale du système d’information data, la stratégie de gestion des données et, finalement, la capacité de votre entreprises à exploiter ces données pour créer de la valeur sur vos marchés.

Un datalake, c’est comme une vaste réserve centralisée conçue pour stocker de grandes quantités de données brutes, quel que soit le format. Son principal avantage réside dans sa capacité à héberger des données non structurées, semi-structurées et structurées, offrant ainsi une flexibilité sans précédent pour l’exploration, l’analyse et l’exploitation de données via des technologies avancées comme l’IA et le machine learning.

Un datawarehouse est une solution de stockage qui organise les données en schémas structurés et hiérarchisés. Spécialement conçu pour les requêtes et les analyses avancées, il est reconnu pour ses performances, sa fiabilité, l’intégrité des données pour les opérations décisionnelles et la génération de rapports.

Le choix entre ces deux architectures de stockage n’est pas anodin. Il doit être éclairé par une fine compréhension des besoins en données de votre entreprise, de ses objectifs stratégiques, de ses processus opérationnels et de ses capacités analytiques.


1. Comprendre les datalakes et les entrepôts de données

Un datalake est une architecture de stockage conçue pour stocker de très larges volumes de données sous leur forme brute, c’est-à-dire dans leur format natif non transformé. Contrairement aux bases de données traditionnelles, il n’impose pas de schéma au moment de l’écriture des données (schema-on-write), mais au moment de la lecture (schema-on-read), offrant ainsi une souplesse inégalée dans la manipulation et l’exploration des données. L’objectif principal d’un datalake est de centraliser les données non structurées et structurées d’une entreprise pour permettre des analyses futures très diverses, y compris l’exploration de données, le big data, le datamining, les analytics et l’intelligence artificielle.

Un entrepôt de données, ou datawarehouse, est une solution de stockage qui collecte des données en provenance de différentes sources et les transforme selon un schéma fixe, structuré et prêt à l’emploi. Il est optimisé pour assurer la rapidité et l’efficacité des requêtes et des rapports analytiques. Il est conçu pour le traitement rapide des opérations de lecture et d’écriture. L’objectif d’un entrepôt de données est de fournir une vision cohérente et unifiée des données, facilitant ainsi la prise de décision et la génération de rapports standardisés pour les fonctions opérationnelles métiers et stratégiques de l’entreprise.

Fonctionnalités des datalakes

  • Stockage de données à grande échelle en format brut
  • Capacité de stockage économique qui permet de conserver des données hétérogènes, facilitant un large éventail d’analyses exploratoires et un réservoir à explorer d’innovations futures data centric
  • Support de tous types de données (structurées, semi-structurées, non structurées) y compris des data tels que les logs, les flux IoT, etc.
  • Écosystème propice à la démocratisation de l’analyse des données, permettant aux data scientists et aux analystes de travailler avec des données non préparées ou semi-préparées
  • Flexibilité pour l’expérimentation avec des modèles de données évolutifs et des schémas à la volée
  • Intégration facile avec des outils d’analyse avancée et de machine learning
  • Flexibilité dans le modèle de données, qui permet des analyses exploratoires et ad-hoc

Fonctionnalités des datawarehouses

  • Stockage de données organisé selon un schéma défini et optimisé pour les requêtes ; avec également des outils d’ETL (Extract, Transform, Load) éprouvés pour la transformation des données
  • Haute performance pour les requêtes structurées et les rapports récurrents
  • Une source de vérité unique pour l’entreprise, facilitant la cohérence et la standardisation des métriques et des KPIs
  • Fiabilité et intégrité des données pour la prise de décision basée sur des données historiques consolidées
  • Interfaces utilisateurs conviviales pour la business intelligence, avec des capacités de reporting avancées et des visualisations interactives.
  • Intégration avec les systèmes de gestion de la relation client (CRM) et de planification des ressources de l’entreprise (ERP), enrichissant les données transactionnelles pour des analyses décisionnelles stratégiques

Cas d’utilisation des datalakes

  • Scénarios nécessitant une exploration de données pour identifier des opportunités de marchés émergents, pour prévoir des tendances de consommation ou des modèles cachés.
  • Environnements innovants où l’analytique en temps réel et l’intelligence opérationnelle peuvent transformer des flux de données en actions immédiates.
  • Projets de recherche et développement (R&D) où des données variées doivent être explorées sans la contrainte d’un schéma prédéfini.

Cas d’utilisations des datawarehouses

  • Dans les industries réglementées, comme les services financiers ou la santé, où l’intégrité et la traçabilité des données sont essentielles pour la conformité réglementaire.
  • Lorsque l’on a besoin de mener des analyses sur de longues périodes pour suivre leur évolution au fil du temps et anticiper les tendances futures. Les data warehouses offre une base solide pour les systèmes décisionnels pour les managers qui souhaitent prendre leurs décisions sur la base de données historiques détaillées.
  • Lorsqu’il est crucial de rapprocher des données issues de sources multiples en informations cohérentes pour piloter la stratégie d’entreprise et optimiser les processus opérationnels.

Avantages d’un data lake

Le data lake offre beaucoup de flexibilité pour le stockage de données. Son avantage principal réside dans sa capacité à accueillir tous types de données, des données structurées telles que les lignes et les colonnes des bases de données relationnelles, aux données non structurées comme les textes libres ou encore des médias. Ceci est un véritable avantage pour les organisations agiles qui souhaitent capitaliser sur la variété et la vitesse des données actuelles, y compris les données générées par les appareils connectés (IoT), les plateformes de médias sociaux, et autres sources numériques. L’intégration avec des plateformes d’analyses avancées et le machine learning permet d’extraire des insights précieux qui peuvent être sources d’innovation.

Avantages d’un Entrepôt de Données

L’entrepôt de données, quant à lui, est spécialement conçu pour la consolidation de données issues de divers systèmes en un format cohérent et uniforme. C’est un peu comme une bibliothèque traditionnelle où chaque livre – ou plutôt chaque donnée – a sa place attitrée, classée, indexée ! C’est une solution à privilégier pour les entreprises qui ont besoin d’effectuer des analyses complexes et récurrentes, qui exigent de la performance dans le traitement des requêtes. La structuration des données dans des schémas prédéfinis permet non seulement des interrogations rapides et précises mais assure également l’intégrité et la fiabilité des informations, ce qui est essentiel pour les rapports réglementaires, les audits et la prise de décision stratégique. Les Data warehouses sont également conçus pour interagir avec des outils de reporting et de business intelligence, offrant ainsi de la data visualisation et des analyses compréhensibles par les utilisateurs finaux.

Inconvénients, Limites et Défis

Malgré leurs nombreux avantages, les data lakes et les entrepôts de données ont chacun leurs limites ! Le data lake, de par sa nature même, peut devenir un « data swamp » si les données ne sont pas gérées et gouvernées correctement, rendant les informations difficilement exploitables. La mise en place d’une gouvernance efficace et d’un catalogue de données s’avère nécessaire pour maintenir la qualité et la questionnabilité des données.

Les data warehouses, bien que fortement structurés et performants pour les requêtes prédéfinies, peuvent être rigides en termes d’évolutivité et d’adaptabilité. L’intégration de nouvelles sources de données ou l’ajustement aux nouvelles exigences analytiques peut se révéler très coûteuse et chronophage. De plus, les entrepôts traditionnels peuvent ne pas être aussi bien adaptés à la manipulation de grands volumes de données non structurées, ce qui peut limiter leur application dans les scénarios où les formes de données sont en constante évolution.


3. Critères de choix entre un data lake et un data warehouse

3.1 Volume, Variété et Vitesse de la data

Les trois « V » de la gestion des données – volume, variété et vitesse – sont des critères essentiels dans votre choix entre un data lake et un data warehouse. Si votre organisation manipule des téraoctets ou même des pétaoctets de données diversifiées, issues de différentes sources en flux continus, un data lake est à priori le choix le plus adapté. Sa capacité à ingérer rapidement de grands volumes de données hétérogènes, voire évolutives, en fait un critère de choix déterminant dans les situations où la quantité et la multiplicité des données dictent la structure de l’infrastructure technologique.

L’approche et les outils que vous utilisez pour l’analyse et le traitement des données influencent également le choix de votre architecture de stockage. Les data lakes, avec leur flexibilité et leur capacité d’ingestion de données en l’état, sont parfaitement adaptés aux environnements exploratoires où le data mining et le traitement par intelligence artificielle sont votre lot quotidien. En revanche, si vos besoins s’articulent autour d’analyses structurées et de reporting périodique, un data warehouse offre un environnement hautement performant optimisé pour ces activités, avec la possibilité d’extraire les données de manière rapide et fiable.

La manière dont vous gérez la gouvernance, la sécurité et la conformité des données est un facteur déterminant. Les data warehouses, avec leurs schémas de données structurés et leur maturité en matière de gestion de la qualité des données, offrent un cadre plus strict et sécurisé, ce qui est impératif dans les environnements réglementés. Les data lakes requièrent quant-à-eux une attention particulière en matière de gouvernance et de sécurité des données, surtout parce qu’ils stockent des informations à l’état brut, qui pourraient inclure des données sensibles ou personnelles.

Enfin, les considérations financières et la complexité de la mise en œuvre sont des critères déterminants. Mettre en place un data lake est souvent moins coûteux en termes de stockage brut, mais nécessite souvent des investissements significatifs additifs en outils et en compétences pour être en capacités d’exploiter pleinement cet environnement. Les data warehouses, en revanche, générèrent souvent des coûts initiaux plus élevés, mais leur utilisation est souvent plus rapide et moins complexe, avec un ensemble d’outils déjà intégrés pour la gestion et l’analyse des données.


4. Architecture et technologies : Data Lakes vs. Data Warehouses

L’architecture et les technologies des data lakes et des data warehouses révèlent des différences essentielles dans la manière dont les données sont stockées, gérées, et exploitées. Ces différences influencent directement le choix entre ces deux solutions en fonction des besoins spécifiques en matière de données.

4.1. Stockage de Données

  • Data Lakes : Les data lakes sont conçus pour stocker d’énormes volumes de données sous leur forme brute, sans nécessiter de schéma prédéfini pour le stockage. Cela permet une grande flexibilité dans le type de données stockées, qu’elles soient structurées, semi-structurées ou non structurées. Les technologies comme Apache Hadoop et les services cloud comme Amazon S3 sont souvent utilisés en raison leur évolutivité et leurs capacités à gérer de très larges volumes.
  • Data Warehouses : À l’inverse, les data warehouses stockent des données qui ont été préalablement traitées (ETL – Extract, transform & load) et structurées selon un schéma prédéfini, ce qui facilite les requêtes complexes et l’analyse de données. Des solutions comme Amazon Redshift, Google BigQuery, et Snowflake sont reconnues pour leur efficacité dans le stockage et la gestion de données structurées à grande échelle.

4.2. Indexation et Optimisation des Requêtes

  • Data Lakes : L’indexation dans les data lakes peut être plus complexe en raison de de l’hétérogénéité des formats de données. Cependant, des outils comme Apache Lucene ou Elasticsearch peuvent être intégrés pour améliorer la recherche et l’analyse des données non structurées. Les data lakes requièrent souvent un traitement supplémentaire pour optimiser les requêtes.
  • Data Warehouses : Les data warehouses bénéficient d’une indexation et d’une optimisation des requêtes plus avancées dès le départ, grâce à leur structure hautement organisée. Des techniques comme le partitionnement des données et le stockage en colonnes (par exemple, dans Amazon Redshift) permettent d’exécuter des analyses complexes et des requêtes à haute performance de manière plus efficace.

4.3. Technologies et outils éditeurs

Différents éditeurs et technologies offrent des solutions spécialisées pour les data lakes et les data warehouse :

  • Apache Hadoop : Écosystème open-source qui permet le stockage et le traitement de grandes quantités de données.
  • Amazon S3 : Service de stockage objet offrant une scalabilité, une disponibilité et une sécurité des données.
  • Microsoft Azure Data Lake Storage : Solution de stockage haute performance pour les data lakes sur Azure.
  • Snowflake : Infrastructure de données cloud offrant une séparation du stockage et du calcul pour une élasticité et une performance optimisée.
  • Google BigQuery : Entrepôt de données serverless, hautement scalable, et basé sur le cloud.
  • Oracle Exadata : Solution conçue pour offrir performance et fiabilité pour les applications de bases de données critiques.

Databricks, le pont entre Data Lakes et Data Warehouses

Databricks a un rôle crucial dans l’évolution des architectures de données en offrant une solution qui réduit la frontière entre les data lakes et les data warehouses. Par son approche lakehouse, Databricks permet aux organisations de gérer leurs données de manière plus efficace, en facilitant à la fois le stockage de grandes quantités de données brutes et l’analyse avancée de ces données.
  • Plateforme Unifiée : Databricks offre une plateforme basée sur Apache Spark qui permet aux utilisateurs de réaliser des tâches d’ingénierie de données, de science des données, de machine learning, et d’analyse de données sur un même environnement. Cette approche intégrée facilite la collaboration entre les équipes et optimise le traitement des données.
  • Data Lakehouse : Databricks promeut le concept de « Lakehouse », un modèle d’architecture qui combine les avantages des data lakes et des data warehouses. Le lakehouse vise à fournir la flexibilité et la capacité de stockage des data lakes pour des données brutes et diversifiées, tout en offrant les capacités d’analyse et de gestion de la qualité des données typiques des data warehouses.
  • Delta Lake : La technologie proposée par Databricks est Delta Lake, un format de stockage qui apporte des fonctionnalités transactionnelles, de gestion de la qualité des données, et d’optimisation des requêtes aux data lakes. Delta Lake permet aux organisations de construire un data lakehouse, en rendant les data lakes plus fiables et performants pour des analyses complexes.
  • Avantages en architectures Data : En utilisant Databricks, les entreprises peuvent tirer parti de la scalabilité et de la flexibilité des data lakes tout en bénéficiant des performances et de la fiabilité des data warehouses. Cette approche permet d’effectuer des analyses avancées, du traitement de données en temps réel, et du machine learning à grande échelle.
  • Intégration avec les Écosystèmes de Données Existantes : Databricks s’intègre facilement avec d’autres plateformes de données, comme les services de stockage cloud (Amazon S3, Azure Data Lake Storage, Google Cloud Storage) et les solutions de data warehouse (Snowflake, Google BigQuery, etc.), offrant ainsi une grande flexibilité dans la conception de l’architecture de données.

5. Cas pratiques et scénarios d’utilisation par secteur

  • Géants du web : Les entreprises de la tech utilisent des data lakes pour analyser d’importants volumes de données utilisateurs afin d’affiner les algorithmes de recommandation, de personnaliser l’expérience client et d’optimiser les stratégies de contenu et de publicité.
  • Industries : Les data lakes permettent de collecter et d’analyser les données issues des capteurs IoT pour la surveillance en temps réel des équipements, l’optimisation des chaînes logistiques, et la prévision des opérations de maintenance.
  • Transport : Les entreprises du secteur automobile exploitent des data lakes pour traiter de grandes quantités de données issues de tests de véhicules et ou encore celles relatives aux véhicules autonomes et à l’analyse des comportements de conduite.

5.2 Cas d’utilisation d’un Entrepôt de Données

  • Finance et banque : Les institutions financières et bancaires s’appuient sur des data warehouses pour effectuer des analyses de marché, générer des rapports de performance financière, et conduire des analyses de risques basées sur des données historiques.
  • Retail : Les entreprises de retail utilisent des data warehouses pour analyser les tendances d’achat et de consommation sur plusieurs années, permettant une gestion des stocks plus précise et le développement de campagnes marketing ciblées.
  • Énergie : Les sociétés du secteur de l’énergie exploitent des data warehouses pour la gestion des données relatives à la production, à la consommation énergétique, et pour se conformer aux régulations environnementales et leur exigences en termes de reporting.

5.3 Synthèse des meilleures pratiques

Une mise en œuvre réussie des data lakes et des data warehouses dépend de la stratégie qui va orienter votre choix d’architecture de données.  

  • Gouvernance rigoureuse : Instaurez un cadre strict de gouvernance pour maintenir l’intégrité des données et clarifier l’accès et l’utilisation des données.
  • Qualité : Intégrez des processus systématiques pour le nettoyage et la validation des données, garantissant leur fiabilité pour l’analyse et la prise de décision dans la durée.
  • Catalogage : Adoptez des solutions de Data Catalog pour faciliter la recherche et l’utilisation des données stockées, transformant le data lake en un réservoir de connaissances exploitables.
  • Maintenance proactive : Menez des audits réguliers pour préserver les performances et adapter la structure aux besoins évolutifs de l’entreprise.
  • Évolution : Faites évoluer votre écosystème data avec prudence, en intégrant des innovations technologiques pour améliorer les capacités analytiques et opérationnelles.
  • Compétences à: Investissez dans la formation des équipes pour qu’elles restent à la pointe de la technologie et puissent tirer le meilleur parti de l’infrastructure de données.

Le débat entre data lake et data warehouse ne se réduit pas à un simple choix technologique ; il s’agit d’une décision stratégique qui reflète la vision, la culture et les objectifs de votre entreprise en matière de création de valeur à partir de l’exploitation des données. Alors qu’un data lake offre une palette vaste et flexible pour l’agrégation de données brutes propices à l’exploration et à l’innovation analytique ;  un data warehouse apporte une structure organisée et performante pour le reporting et les analyses décisionnelles.

Votre choix dépend en somme des objectifs spécifiques de votre entreprise, des exigences en matière de gouvernance des données, de la variété et du volume des données, ainsi que de la rapidité avec laquelle l’information doit être convertie en action. Le data lake convient aux organisations qui aspirent à une exploration de données libre et sans contrainte, où les potentiels de l’IA et du machine learning peuvent être pleinement exploités. Inversement, le data warehouse est la solution pour ceux qui cherchent à solidifier leur Business Intelligence avec des données cohérentes et fiables.

Les data lakes et data warehouses ne sont pas mutuellement exclusifs et peuvent tout à fait coexister, se complétant mutuellement au sein d’une architecture de données bien conçue, permettant ainsi aux organisations de tirer le meilleur parti des deux mondes.

Choisir une architecture data modulaire ?

   1. Définition et principes d’architecture

L’agilité la capacité à évoluer très rapidement – voir de « pivoter » – ne sont plus aujourd’hui l’apanage des startups. Toutes les entreprises doivent s’adapter, réagir et innover constamment pour exister sur leurs marchés. On évoque souvent la nécessite d’avoir un système d’information agile, l’architecture de données modulaire est son pendant.

Ce modèle architectural, qui s’oppose à la rigidité des systèmes monolithiques traditionnels, est basé sur la conception de composants autonomes ou modules indépendants qui peuvent interagir entre eux à travers des interfaces prédéfinies. Chacun est dédié à une fonctionnalité data spécifique qui couvre un aspect de la chaine de valeur. Cette approche fragmente le système en sous-ensembles de tâches, ou de modules, qui peuvent être développés, testés et déployés de manière indépendante :

  • Collecte & ingestion des données, processus dynamique qui prend en charge divers formats, en temps réels ou en lots
  • Traitement et transformation, exécution d’opération comme le nettoyage, le redressement ou l’enrichissement des données, l’application de règles métiers, la conversion dans d’autres formats
  • Organisation et stockage selon les performances attendues, en data lake, en base de données opérationnelle, en data warhouse ou solution de stockage hybride
  • Analyse et restitution, pour le calcul de KPI, l’exécution de requêtes, l’utilisation de l’IA pour obtenir des insights, la génération de rapports, etc.
  • Sécurité et conformité, pour la gestion de l’authentification et des accès, le chiffrement (…) mais aussi la compliance auditable avec toutes les règlementations en vigueur dont RGPD

Cette architecture modulaire offre aux entreprises la possibilité de mettre à jour, de remplacer ou de dé-commissionner des composants distincts sans impacter le reste du système Data. En d’autres termes, une architecture de données modulaire est semblable à un jeu de legos où l’on peut ajouter, retirer ou modifier des blocs selon les besoins, sans devoir reconstruire l’ensemble de la structure.

La flexibilité en priorité

La quantité de données générées et collectées par les entreprises a explosé littéralement et les volumes sont exponentiels, tout comme la variété des formats et la vitesse de traitement requise. Les systèmes d’information (SI) doivent plus que jamais être en capacités de s’adapter rapidement à ces nouvelles exigences. Hors le poids du legacy reste le frein numéro 1. Lors des chantiers de modernisation des SID (Système d’information décisionnel historiques) ; le choix d’une architecture modulaire est de plus en plus populaire et pour cause.

Les architectures modulaires répondent à ce besoin impérieux de flexibilité sur des marchés très concurrencés, mondiaux et volatiles. C’est un choix qui permet une meilleure réactivité face à l’évolution très rapides des besoins métiers, des innovations technologiques ou des changements stratégiques. Ces architectures sont nativement conçues pour une intégration facile de nouvelles technologies, telles que le traitement en temps réel des données ou l’intelligence artificielle, tout en supportant les besoins croissants en matière de gouvernance et de sécurité des données.

Cette flexibilité est également synonyme de viabilité à long terme pour les systèmes d’information, offrant ainsi aux entreprises un avantage concurrentiel durable. En résumé, l’architecture de données modulaire n’est pas seulement une solution pour aujourd’hui, mais une fondation solide pour l’avenir.


2. Les avantages d’une architecture Data Modulaire

Une architecture Data modulaire répond aux enjeux de notre ère basée sur la prolifération des données mais pas que ! C’est aussi une réponse alignée sur une stratégie d’entreprise pour qui la flexibilité et l’innovation continue sont des impératifs.

2.1. Évolutivité et facilité de maintenance

La maintenance et l’évolution des SI sont des gouffres financiers, fortement consommateurs de ressources et souvent un frein à l’innovation. Une architecture data modulaire facilite grandement la tâche ! Un composant peut être mis à jour ou remplacé sans risquer d’affecter l’intégralité du système, ce qui réduit significativement les temps d’arrêt et les coûts associés. L’évolutivité et l’innovation sont intrinsèques : ajout de nouvelles fonctionnalités, remplacement, montée en charge, intégration de nouvelles sources de données, (…).

2.2. Agilité organisationnelle et adaptabilité

Dans notre écosystème résolument numérique, l’agilité est primordiale. En isolant les différentes fonctions liée la gestion des données dans des modules autonomes, les architecture data modulaire s’adaptent aux demandes et aux besoins par nature évolutifs. Cette structure permet non seulement d’intégrer rapidement de nouvelles sources de données ou des technologies émergentes ; mais aussi de répondre efficacement aux exigences réglementaires spécifiques à la data.

Exemples : Dans le cas des évolutions des normes de protection des données, le module dédié à la sécurité peut être mis à jour ou remplacé sans affecter les mécanismes de traitement ou d’analyse de données. De même, si une entreprise décide de tirer parti de nouvelles sources de données IoT pour améliorer ses services, elle peut développer ou intégrer un module d’ingestion de données spécifique sans perturber le fonctionnement des autres composants.

Cette adaptabilité réduit considérablement la complexité et les délais associés à l’innovation et à la mise en conformité, ce qui est fondamental pour conserver une longueur d’avance dans des marchés data-driven où la capacité à exploiter rapidement et de manière sécurisée de grandes quantités de données est un avantage concurrentiel qui fait clairement la différence.

2.3 Optimisation des investissements et des coûts dans la durée

L’approche « pay-as-you-grow » des architectures data modulaires permet de lisser les dépenses en fonction de l’évolution des besoins, sans donc avoir à engager des investissements massifs et souvent risqués. Cette stratégie budgétaire adaptative est particulièrement pertinente pour les entreprises qui cherchent à maîtriser leurs dépenses tout en les alignant sur leur trajectoire de croissance.


3. Architecture Modulaire vs. Monolithique

En ingénierie de la data, on distingue les architectures modulaires des systèmes monolithiques en raison de l’impact direct que leur structure même a sur l’accessibilité, le traitement et l’analyse des données.

3.1. Distinctions fondamentales

Les monolithiques fonctionnent comme des blocs uniques où la collecte, le stockage, le traitement et l’analyse des données sont intégrés dans une structure compacte ce qui rend l’ensemble très rigide. Ainsi, une modification mineure peut nécessiter une refonte complète ou de vastes tests pour s’assurer qu’aucune autre partie du système ne connait de régression.

Les architectures de données modulaires, quant à elles, séparent ces fonctions en composants distincts qui communiquent entre eux via des interfaces, permettant des mises à jour agiles et des modifications sans perturber l’ensemble du système.

3.2. Maintenance & évolution

Faire évoluer et maintenir un SID monolithique peut être très fastidieux car chaque modification peut impacter l’ensemble. En revanche, dans le cas d’une architecture de données modulaire, l’évolution se fait composant par composant. La maintenance est facilitée et surtout moins risquées.

Exemple : Le changement ou l’évolution du module Data Visualisation ne perturbe en rien le module de traitement des données, et vice versa.

3.3. Intégration des innovations technologiques

L’ingénierie de la data est foisonnante de changements technologique, les architectures modulaires offrent une meilleure adaptabilité. Elles permettent d’intégrer rapidement de nouveaux outils ou technologies telles que l’Internet des Objets (IoT), les data cloud platforms, les solutions d’IA, de machine Learning ou encore d’analyse prédictive ; alors qu’un système monolithique nécessite une refonte significative pour intégrer de telles solutions. Elles permettent l’intégration de technologies avancées telles avec plus de facilité et moins de contraintes.

Les architectures modulaires encouragent l’innovation grâce à leur flexibilité intrinsèque. Les équipes peuvent expérimenter, tester et déployer de nouvelles idées rapidement, contrairement au SID monolithique plus lourd et complexe à manipuler. Cette capacité d’adaptation est cruciale pour exploiter de nouvelles données, telles que les flux en temps réel ou les grands volumes de données non structurées.

Exemple : l’introduction d’un module d’apprentissage automatique pour l’analyse prédictive peut se faire en parallèle du fonctionnement normal des opérations, sans perturbation.

3.4. Évolutivité & performances

Les architectures de données modulaires peuvent être optimisées de manière granulaire au niveau des charges pour dimensionner les performances au plus juste des besoins ; et ce sans impacter les autres fonctions du système. Dans un système monolithique, augmenter la performance implique souvent de redimensionner l’ensemble du système, ce qui est moins efficace et surtout plus coûteux.

Contrairement aux systèmes monolithiques, où l’intégration de nouvelles technologies peut être un processus long et coûteux, les architectures modulaires sont conçues pour être évolutives et extensibles.


4. Architecture modulaire vs. microservices

4.1 différences entre une architecture data modulaire et une architecture microservices

Les deux termes peuvent en effet porter à confusion car ces deux types d’architecture sont basés sur la décomposition en modules autonomes mais l’un est orienté services, l’autre composants. Leurs pratiques de développement et de mise en opérations sont bien distincts.

Dans l’architecture data modulaire, chaque module représente une certaine capacité du système et peut être développé, testé, déployé et mis à jour indépendamment des autres.

Les microservices, en revanche, sont un type spécifique d’architecture modulaire qui applique les principes de modularité aux services eux-mêmes. Un système basé sur des microservices est composé de petits services autonomes qui communiquent via des API. Chaque microservice est dédié à une seule fonctionnalité ou un seul domaine métier et peut être déployé, mis à jour, développé et mise à l’échelle indépendamment des autres services.

4.2 Comment choisir entre architecture modulaire et microservices ?

  1. Taille et complexité du projet : Les microservices, par leur nature granulaire, peuvent introduire une complexité inutile dans la gestion des petits entrepôts de données ; ou pour des équipes d’analyse de données limitées. Ils sont surdimensionnés pour les petits projets. Une architecture modulaire, avec des composants bien définis pour la collecte, le traitement et l’analyse, suffit largement.
  2. Expertises des équipes data : Une architecture microservices nécessite des connaissances spécialisées sur l’ensemble de la chaine de création de valeur de la data, de la collecte à l’analyse, ce qui n’est pas forcément transposable sur des petites équipes ou composées de consultants spécialisés par type d’outils.
  3. Dépendance et intégration : L’architecture modulaire gère mieux les dépendances fortes et intégrées, tandis que les microservices exigent une décomposition fine et des interfaces claires entre les services. Les architectures modulaires se comportent donc mieux quand les données sont fortement interdépendantes et lorsque des modèles intégrés sont nécessaires. Les microservices, quant-à-eux, sont plus adaptés quand on cherche une séparation claire et des flux de données autonomes, permettant ainsi des mises à jour très ciblées sans affecter l’ensemble du pipeline de données.
  4. Performances et scalabilité : Les microservices peuvent être recommandés dans le cas de traitements à grande échelle qui nécessitent une scalabilité et des performances individualisées. En revanche, cela vient complexifier la gestion du réseau de données et la synchronisation entre les services.
  5. Maintenance des systèmes de données : Bien que ces deux types d’architectures soient par natures évolutifs, les microservices facilitent encore davantage la maintenance et les mises à jour en isolant les changements à des services de données spécifiques. Cela peut réduire les interruptions et les risques d’erreurs en chaîne lors des mises à jour dans des systèmes de données plus vastes.

5. Cas d’usages et applications pratiques

Une architecture de données modulaire, avec sa capacité à s’adapter et à évoluer, est particulièrement recommandée dans des cas où la flexibilité et la rapidité d’intégration de nouvelles technologies sont essentielles. Elle est devenu est must-have pour les entreprises qui cherchent à maximiser l’efficacité de leurs systèmes d’information décisionnels.

  • Télécoms : Dans ce secteur, où les volumes de données sont gigantesques et les besoins de traitement en temps réel sont critiques, l’architecture modulaire permet d’isoler les fonctions de traitement et d’analyse de flux de données, facilitant une analyse et une prise de décision rapides sans perturber les autres systèmes.
  • Secteur de la santé – Gestion des dossiers patients : Une architecture modulaire est particulièrement efficace pour gérer les dossiers de santé électroniques dans les hôpitaux. Des modules autonomes traitent les entrées en laboratoires d’analyse, les mises à jour des dossiers médicaux et les ordonnances, permettant des mises à jour régulières du module de gestion des prescriptions sans perturber l’accès aux dossiers historiques des patients.
  • Banque et finance – Analyse de la fraude : Un de nos clients utilise un module d’analyse de fraude en temps réel sur son système de gestion des transactions financières. Ce module s’adapte aux nouvelles menaces sans nécessiter de refonte du système transactionnel entier, ce qui renforce la sécurité et réduit les failles de vulnérabilité.
  • Plateformes de streaming vidéo : Ces services utilisent des architectures modulaires pour séparer le traitement des données de recommandation d’utilisateurs des systèmes de gestion de contenu, permettant ainsi d’améliorer l’expérience utilisateur en continu et sans interrompre le service de streaming principal.
  • Fournisseurs de services cloud : Ils tirent parti de modules dédiés à la gestion des ressources, à la facturation et à la surveillance en temps réel pour offrir des services évolutifs et fiables, enrichis en solutions d’IA notamment innovations pour l’analyse prédictive de la charge serveur.

Études de cas sur les bénéfices des architectures modulaires vs. monolithiques :

  • E-commerce – Personnalisation de l’expérience client : Un de nos clients, plateforme de vente en ligne, a implémenté un module d’intelligence artificielle pour la recommandation de produits. Cette modularité a permis d’innover en incorporant l’apprentissage automatique sans avoir à reconstruire leur plateforme existante, augmentant ainsi les ventes croisées et additionnelles.
  • Smart Cities – Gestion du trafic : Une métropole a installé un système modulaire de gestion du trafic qui utilise des capteurs IoT pour adapter les signaux de circulation en temps réel. L’introduction de nouveaux modules pour intégrer des données de différentes sources se fait sans interruption du service, améliorant ainsi la fluidité du trafic et les prédictions.

Avantages et inconvénients de l’architecture modulaire en ingénierie des données :

Avantages

  • Agilité : Permet une intégration rapide de nouvelles sources de données, d’algorithmes d’analyse, etc.
  • Maintenabilité : Les mises à jour peuvent être opérées sur des modules spécifiques sans interruption de services.

Inconvénients

  • Complexité de l’intégration : L’implémentation peut demander des charges supplémentaires pour assurer l’intégration entre les modules.
  • Gestion des dépendances : Une planification rigoureuse est nécessaire pour éviter les conflits entre modules interdépendants.

5. Conception d’une Architecture de Données Modulaire

En ingénierie data, la conception d’une architecture modulaire nécessite une segmentation du pipeline de données en modules distincts et indépendants, chacun est dédié à une tâche précise dans la chaîne de valeur des données.

Les prérequis d’une architecture data modulaire :

  • Interopérabilité : Les modules doivent s’intégrer et communiquer entre eux facilement via des formats de données standardisés et des API bien définies. Cette étape est cruciale pour garantir la fluidité des échanges de données entre les étapes de collecte, d’ingestion, de traitement et d’analyse.
  • Gouvernance des données : Chaque module doit être conçu avec des mécanismes de gouvernance (governance by design) pour assurer l’intégrité, la qualité et la conformité des données à chaque étape :  gestion des métadonnées, contrôle des versions, audit, …
  • Sécurité : Vous devez intégrer un système de contrôle de sécurité adapté à la nature des données traitées dans chaque module. Par exemple, les modules de collecte de données ont besoin de sécurisation des données en transit, tandis que ceux impliqués dans le stockage se concentrent sur chiffrement des données froides.

Les meilleures pratiques pour la conception de systèmes modulaires

  • Conception granulaire : Vous devez penser vos modules autour des fonctionnalités de données spécifiques attendues, en veillant à ce qu’ils soient suffisamment indépendants pour être mis à jour ou remplacés sans perturber le pipeline global.
  • Flexibilité et évolutivité : Vous devez concevoir des modules qui peuvent être facilement mis à l’échelle ou modifiés pour s’adapter à l’évolution des données, comme l’ajout de nouveau formats de données ou l’extension des capacités d’analyse sur des volumes étendus.
  • Cohérence et normalisation : Vous devez tendre vers des standards pour la conception des interfaces des modules et la structuration des données, ce qui simplifiera l’ajout et l’harmonisation de modules additionnels et l’adoption de nouvelles technologies dans le futur.

6. Tendances Futures et Prédictions

À l’heure où l’IA et l’apprentissage automatique redessine notre monde et nourrisse l’ingénierie de la Data, l’architecture de données modulaire vraisemblablement connaitre aussi des transformations majeures à court terme.

  • Intégration approfondie de l’IA : Les modules d’IA seront de plus en plus élaborés, capables d’effectuer non seulement des analyses de données, mais aussi de prendre des décisions autonomes sur la manière de les traiter et de les stocker. L’auto-optimisation des pipelines de données basée sur des modèles prédictifs pourra augmenter l’efficacité et réduire les coûts opérationnels. Ils pourront identifier des modèles complexes indétectables par des analyses traditionnelles.
  • Apprentissage automatique en tant que service : L’architecture de données modulaire incorporera surement des modules d’apprentissage automatique en tant que service (MLaaS), permettant une scalabilité et une personnalisation accrues. Ces services seront mis à jour régulièrement avec les derniers algorithmes sans redéploiement lourd du système. Ces modules incluront des composants capables d’auto-évaluation et de recalibrage pour s’adapter aux changements de données sans intervention humaine. Par exemple, un module pourra ajuster ses propres algorithmes de traitement de données en fonction de la variabilité des schémas de données entrantes.
  • Auto-réparation et évolutivité : Les modules seront conçus pour détecter et réparer leurs propres défaillances en temps réel, réduisant ainsi les temps d’arrêt. Avec l’apprentissage continu, ils anticiperont les problèmes avant qu’ils ne surviennent et adapteront leur capacité de traitement selon les besoins.
  • Interopérabilité avancée : Les futures architectures de données modulaires seront probablement conçues pour interagir sans effort avec une variété encore plus large de systèmes et de technologies, y compris des algorithmes d’IA très élaborés, des modèles de données évolutifs et des nouveaux standards d’interface.
  • Automatisation de la gouvernance des données : Les modules dédiés à la gouvernance utiliseront l’IA pour automatiser la conformité, la qualité des données et les politiques, rendant la gouvernance des données plus proactive et moins sujette à erreur.

L’architecture de données modulaire va devenir plus dynamique, adaptative et intelligente, tirant parti de l’IA et de l’apprentissage automatique non seulement pour la gestion des données mais pour continuellement s’améliorer et innover dans le traitement et l’analyse des données.


Une architecture de donnée modulaire, en bref.


Une architecture de données modulaire offre aux entreprises une flexibilité sans précédent. Elle permet de gagner en agilité opérationnelle car elle a la capacité de se dimensionner et de s’ajuster aux changements qu’ils soient métiers ou technologique sans impact négatif sur le système existant. Cette approche par composants autonomes permet une meilleure gestion du pipeline de données et une évolutivité des systèmes inégalées. Les coûts et les interruptions liés à l’évolution technologique s’en trouvent drastiquement réduits. En outre, l’architecture modulaire est conçue pour intégrer facilement les dernières innovations comme l’intelligence artificielle et le machine learning. Des bases solides en sommes pour soutenir votre transformation digitale et votre croissance sur vos marchés.


Quelques solutions pour vous accompagner dans cette transition technologique


Databricks
– Pour une plateforme unifiée, offrant une analyse de données et une IA avec une architecture de données modulaire au cœur de sa conception.

Snowflake – Offre une architecture de données dans le cloud conçue nativement pour être flexible et l’évolute, permettant aux entreprises de s’adapter rapidement aux besoins et aux demandes changeantes des métiers et des marchés.

GoogleCloudPlatform – Avec BigQuery, une solution puissante pour une gestion de données modulaire, permettant une analyse rapide et à grande échelle.

Quel est l’arsenal d’un spécialiste Data ?

Alors que les data sont devenues les nouveaux gisements de pétrole de notre ère numérique, les entreprises ont besoin crucial de professionnels capables de les extraire, les interpréter, les gérer et les sécuriser.

Chez Smartpoint, nous savons que l’excellence dans le domaine de la data ne repose pas sur une compétence unique mais sur un large spectre de talents diversifiés. C’est notre richesse et ce qui fait de nous un pure-player reconnus dans le domaine de la data depuis près de 20 ans.


Nos consultants en Business Intelligence, ingénieurs data, analystes de données, business analystes, architectes data et data scientists – tous doivent maîtriser de larges domaines de compétences en constante évolution.

Leur dénominateur commun ? Ils ont tous des bases solides en programmation car c’est essentiel. Qu’il s’agisse de maîtriser le SQL pour les requêtes de bases de données, de programmer en Python pour développer des algorithmes, ou de posséder un sens de lecture aiguisé pour la visualisation de données et le storytelling, la variété des tâches est notre quotidien.


L’infographie ci-dessus démontre qu’aucun rôle dans l’univers de la data n’est à l’abri de la diversité des savoir-faire. SQL, pipelines de données, engineering, management, analyse, statistiques, machine learning : Il ne s’agit que d’outils de notre arsenal chez Smartpoint.

Nous ne nous contentons pas de collecter les données ; nous les façonnons en histoires, nous les traduisons en décisions stratégiques, et nous les sécurisons comme les actifs les plus précieux de nos clients.


Chez Smartpoint, chaque professionnel est reconnu pour sa capacité à jongler avec une gamme étendue de compétences tout en approfondissant son expertise dans des domaines spécifiques. Cette richesse d’expertises contribue non seulement à notre propre valeur ajoutée parmi nos comparables ESN mais renforce aussi la qualité des solutions que nous apportons à nos clients. C’est cette diversité qui fait de notre équipe une communauté unique déchiffreur de problèmes, d’innovateurs et même de conteurs.


Chez Smartpoint, nous connaissons l’importance capitale d’une exploitation data qui est de plus intelligente et … autonome d’où la nécessité d’intégrer des fondements éthiques — C’est une responsabilité que nous assumons avec la plus grande rigueur.

Lorsqu’il s’agit de conseiller nos clients, nous mettons un point d’honneur à allier éthique, innovation et recherche de leviers d’économie. Nous prônons des stratégies data et des technologies qui vont au-delà de la conformité et s’inscrivent dans une logique de gestion optimisée des ressources.

Nous recommandons notamment des architectures de données qui permettent l’optimisation des ressources et la sobriété énergétique avec des processus rationalisés, incarnés par des systèmes agiles fondés sur les microservices. Ces systèmes, par leur design, visent à réduire l’empreinte énergétique et offrent une gestion simplifiée ainsi qu’une réutilisation stratégique des composants, entraînant une diminution significative des dépenses.

Adoptant le principe de « Sustainability by design », nous accompagnons nos clients dans leurs choix technologiques afin de capitaliser sur leur stack actuelle ou en choisissant des produits dont la valeur ajoutée est éprouvée. Chaque solution que nous mettons en œuvre est analysée sous l’angle de son rendement à long terme, son coût opérationnel et son Total Cost of Ownership (TCO), en mettant un accent particulier sur la fiabilité opérationnelle et la constance des performances sur la durée.


Source : https://vandoan226.medium.com/data-job-market-2024-insights-you-need-to-boost-your-career-d05c7e18a5c1

Stratégies d’ingestion de la data et solutions 2024

Votre stratégie d’ingestion de données dépend aussi de votre architecture data et de vos choix en matière de stockage. La maîtrise des différentes stratégies d’ingestion des données essentielle dans l’ingénierie data. C’est un prérequis pour garantir l’efficacité, la fiabilité et la scalabilité des pipelines de données.

L’ingestion de données est le premier contact entre la donnée brute et les systèmes d’information. Elle pose les bases des analyses futures et de la création de valeur.

Cette étape est intrinsèquement liée à l’architecture globale de traitement des données et aux choix de stockage, qui doivent être adaptés pour répondre aux différents cas d’usages.


Le choix de la stratégie d’ingestion dépend de plusieurs facteurs, comme que le volume des données, la vitesse requise pour l’obtention des insights, la complexité des opérations de transformation, et le niveau de latence acceptable. L’intégration des stratégies d’ingestion dans l’architecture de données et les choix de stockage permet de créer des pipelines robustes, efficaces et créateurs de valeur pour votre entreprise.

1. ETL (Extract, Transform, Load)

L’ETL est la méthode traditionnelle. Les données sont extraites de différentes sources puis transformées pour répondre aux exigences de l’entrepôt de données (nettoyage, agrégation, résumé, etc.). Elle sont ensuite chargées dans le data warehouse. Cette approche est à privilégier lorsque la transformation des données nécessite des calculs lourds qui sont non seulement couteux en ressources informatiques ; mais aussi sont plus efficaces lorsqu’ils sont effectués en dehors de la base de données cible.

Quelques solutions recommandées par nos équipes : Talend Data Fabric, Informatica, Fivetran, Matillon, Apache NiFi, DataStage IBM

2. ELT (Extract, Load, Transform)

L’ELT est une variante de l’ETL. Les données sont d’abord extraites puis chargées dans la destination cible (souvent un data lake ou un entrepôt de données moderne). La transformation est effectuée à postériori. Cette stratégie tire parti de la puissance de calcul des systèmes de stockage modernes pour effectuer les différents traitements. L’ELT est à privilégier dans les environnements qui nécessitent une grande flexibilité et une exploration rapide des données, ainsi que pour les architectures big data.

Quelques solutions recommandées par nos équipes : Stitch, Fivetran, Snowflake (propre langage SQL et fortes capacités de traitement en parallèle), Google BigQuery, Amazon Redshift, DBT

3. Reverse ETL

Le Reverse ETL est une approche relativement nouvelle qui consiste à prendre des données déjà transformées et organisées dans un data warehouse ou un data lake, et à les envoyer vers des systèmes opérationnels comme les CRM ou les plateformes de marketing automatisé. Cette stratégie est utilisée pour enrichir les applications opérationnelles avec des insights approfondis et favoriser ainsi des actions en temps réel basées sur des analyses de données.

Quelques solutions recommandées par nos équipes : Airbyte, Census, Hightouch

4. Streaming Data Ingestion

L’ingestion de données en streaming est une approche où les données sont ingérées en temps réel à mesure qu’elles sont générées. Cette stratégie est essentielle pour les cas d’utilisation qui dépendent de la fraîcheur des données et le traitement en continu des flux, comme la détection des fraudes, la surveillance en temps réel de systèmes (IOT) ou les recommandations instantanées.

Quelques solutions recommandées par nos équipes : Apache Kafka, Azure Data Factory, Google Cloud Dataflow

5. Data Federation

La fédération de données est une approche où les données restent dans leurs systèmes sources et sont virtualisées pour apparaître comme source de données unique. Cette stratégie évite le déplacement physique des données et est utile pour les requêtes ad hoc ou des cas d’utilisation d’accès aux données en temps réel. Elle est supportée par des frameworks comme Hadoop.

6. Change Data Capture (CDC)

Le Change Data Capture est une technique utilisée pour capturer les changements dans les données à leur source et les répliquer dans le système de destination. Le CDC est souvent utilisé pour synchroniser des bases de données en temps réel et pour garantir que les entrepôts de données et les data lakes sont constamment mis à jour avec les dernières informations.

Quelques solutions recommandées par nos équipes : Informatica ou Talend


La stratégie d’ingestion choisie doit être cohérente avec votre architecture data et s’aligner avec les besoins analytiques et opérationnels de votre entreprise.

  • Les architectures data warehouses sont à privilégier pour des besoins d’analyse et de reporting structuré qui requièrent des données bien organisées et souvent transformées avant la phase ingestion.
  • Les data lakes offrent davantage de flexibilité pour les données non structurées ou semi-structurées et supportent à la fois les ingestions en temps réel et par lots, permettant ainsi un traitement et une analyse à postériori.
  • Les architectures en streaming répondent au besoin d’analyses en temps réel car elles gèrent l’ingestion en continu des données via des plateformes spécialisées comme Apache Kafka.
  • Les architectures microservices et orientées événements sont décentralisées et offrent davantage de scalabilité, chaque microservice gérant son propre pipeline de données.
  • Les architectures hybrides mixent entrepôts et lacs de données pour capitaliser sur les avantages de chaque approche.
ARCHITECTURE ET STOCKAGE DES DONNÉS

Les choix de stockage, comme le stockage sur disque, le stockage objet dans le cloud ou les bases de données NoSQL, influencent directement la manière dont les données sont ingérées et gérées.

  • Le stockage sur disque est à privilégier pour un accès rapide et fréquent.

  • Le stockage objet dans le cloud permet plus de scalabilité pour les data lakes avec des capacités d’intégration avec des services d’analyse dans le cloud.

  • Le stockage en bloc soutient les performances en lecture/écriture pour les bases de données particulièrement exigeantes.

  • Le stockage de fichiers distribués est optimal pour l’accès sur plusieurs serveurs.

  • Les bases de données NoSQL sont à privilégier les données non structurées car elles offrent davantage de flexibilité avec les données non structurées.

L’ingestion de données est indissociable de l’architecture de données et des solutions de stockage choisies. Nos data engineers Smartpoint appréhendent cela comme un écosystème interconnecté, optimisé pour les besoins spécifiques de votre organisation. En prenant en considération tous ces critères – cas d’utilisation, fiabilité, destination des données, fréquence d’accès, volume, format, qualité et gestion des données en streaming – ils sont en capacité de construire des bases solides pour la gestion des données qui vous permettront de tirer des insights précieux et d’alimenter vos prises de décision.


Vous avez besoin d’être accompagné dans votre stratégie d’ingestion de données ? Vous avez besoin d’être conseillé pour trouver la solution qui vous correspond ? Vous avez besoin de renfort dans vos équipes ou un chantier à lancer ? Challengez-nous !



Data Engineer : Pourquoi Smartpoint est THE place to be ?

Smartpoint est le terrain de jeu idéal pour les Data Engineers à la recherche d’un parcours professionnel passionnant. En tant que pure player de la data, Smartpoint offre un écosystème où innovation, sens et évolution professionnelle se rencontrent pour créer des carrières d’exception.

1. Une mission qui a du sens

Chez Smartpoint, les Data Engineers ne sont pas de simples consultants ; ils sont les artisans d’un monde meilleur. La data, autrefois cantonnée au marketing sur les réseaux sociaux, irrigue maintenant tous les aspects de notre vie, apportant des solutions innovantes dans tous les domaines dont cruciaux que sont la santé et l’écologie. Travailler dans la data chez Smartpoint, c’est avoir un impact réel et positif sur la société. Smartpoint a d’ailleurs une politique RSE parmi les plus exemplaires de la profession (Top 1% des sociétés) et est engagé pour la planète.

2. Au coeur d’un secteur en pleine croissance

L’évolution du big data, depuis ses balbutiements en 2008-2009 jusqu’à son intégration actuelle avec l’IA, a rendu cette industrie plus accessible et essentielle que jamais. Les Data Engineers chez Smartpoint sont les pilotes de cette révolution, parés pour aider les entreprises à se transformer et à prospérer dans ce nouvel âge de l’information.

3. La promesse d’une carrière au top !

Le domaine de la data engineering est un véritable terreau d’innovations, où chaque jour est synonyme de découverte et d’invention. Chez Smartpoint, cette réalité prend tout son sens, offrant aux Data Engineers une carrière passionnante et jamais monotone. Prenons l’exemple des avancées dans l’analyse prédictive, la personnalisation en temps réel des expériences clients ou encore le développement de villes intelligentes grâce à l’Internet des Objets (IoT). Ces innovations ne sont que la pointe de l’iceberg des projets auxquels nos ingénieurs contribuent. La diversité des projets garantit une carrière challengeante, où l’ennui n’a pas sa place. Qu’il s’agisse de rendre les systèmes de santé plus prédictifs et réactifs ou d’optimiser les chaînes d’approvisionnement grâce à l’intelligence artificielle, les défis abondent, rendant votre parcours professionnel chez Smartpoint exceptionnellement riche et gratifiant.

4. Un métier techniquement exigeant

Le Data Engineer chez Smartpoint est au centre de l’échiquier technologique, collaborant étroitement avec les data analysts et les data scientists pour façonner l’infrastructure de données de l’entreprise. C’est un rôle complexe qui offre une variété et une profondeur technique rarement égalées dans le secteur numérique.

5. Un salaire compétitif et de la formation en continu

Avec des salaires débutant entre 40 et 50 000 € pour les juniors et dépassant les 75 000 € pour les seniors data tech leads en Île-de-France, Smartpoint valorise l’expertise de ses Data Engineers. Non seulement, vous allez participé à des projets passionnants mais nos data tech leads vous forme et vous font monter en compétences sur les dernières innovations technologiques. De plus, un programme de certifications bonifié par des primes à l’obtention renforce cette reconnaissance, affirmant l’engagement de Smartpoint envers la croissance personnelle et professionnelle de ses talents.

Smartpoint, c’est l’endroit rêvé pour les Data Engineers ambitieux. Ici, vous ne trouvez pas seulement un emploi ; vous rejoignez une communauté de pionniers qui façonnent activement l’avenir de la data et, par extension, de la société. SmartPoint est plus qu’une entreprise ; c’est un mouvement où chaque jour est une opportunité d’apprendre, de s’épanouir et de faire une différence. Alors, si l’avant-garde technologique en data vous appelle, la réponse est claire : SmartPoint est THE place to be. Rejoignez nous !

Architecture Data,  micro-services ou monolithique ? Un choix déterminant pour votre infrastructure d’entreprise.

Alors qu’il existe une multitude d’outils et de solutions data qui s’offrent à vous ; vous devez vous interroger sur votre architecture Data – et sa roadmap – car c’est elle qui doit influencer votre stack technologique. Il ne s’agit pas tant de choisir entre architecture monolithique et architecture micro-services que de s’interroger sur la pertinence de votre stratégie data dont l’objectif est de soutenir votre business et vos capacités d’innovations dans la durée. Votre « vision data » va se traduire par une décision architecturale qui définit la manière dont votre entreprise gère et valorise ses données. Explications.

Du on-premise au cloud, c’est aussi une évolution architecturale !

Le paysage technologique des deux dernières décennies a connu une transformation radicale. Hier, les architectures de données étaient intrinsèquement en silos, chaque système fonctionnant en vase clos avec des degrés de compatibilité très limités. Les applications et les données étaient prisonnières d’infrastructures « on-premise » où l’intégration et l’interopérabilité étaient des défis majeurs (et des vrais centres de coûts) qui freinaient la collaboration et la pleine exploitation des données.

Aujourd’hui, le paradigme a basculé vers le « cloud », où se mêlent des configurations hybrides et des solutions on premise toujours très présentes. L’adoption d’architectures en micro-services a radicalement changé l’approche de la conception et de la gestion des données. Cependant, avec cette nouvelle liberté vient la responsabilité de choisir judicieusement parmi un large éventail d’outils éditeurs et de services offerts par divers cloud service providers (CSP). Les micro-services offrent un catalogue de services indépendants, chacun excellant dans sa spécialité et communiquant avec les autres via des interfaces bien définies.

Architectures Data, monolithique vs. micro-services

C’est la configuration traditionnelle que l’on rencontre encore dans la plupart des entreprises. Toutes les fonctions sont regroupée en un seul et unique bloc logiciel. Imaginons par exemple, un énorme référentiel Airflow qui gère à la fois l’ingestion, la transformation des données et l’automatisation des processus métier, comme un guichet unique pour toutes les opérations data.

Avec le cloud, les architectures data ont évolué vers un modèle de micro-services, où chaque service est autonome et spécialisé dans une fonction précise : gestion des données batch, transformation des données ou data warehousing. Citons pour exemples AWS Lambda, Apache Kafka, ou encore Snowflake choisis pour leur efficacité dans leurs domaines respectifs. Chaque service opère indépendamment, permettant une spécialisation et une adaptabilité qui étaient inimaginables dans les architectures en silos du passé.

Quel choix d’outil pour quelle architecture ?

Pour une architecture monolithique : Vous pouvez choisir des outils intégrés capables de gérer l’ensemble du cycle de vie des données au sein d’une même plateforme, tels que Talend ou Informatica. Les solutions comme Microsoft SQL Server Integration Services (SSIS) pour Azure peuvent convenir à ce type d’architecture en offrant un ensemble d’outils unifié.

Pour une architecture microservices : Vous optez pour la spécialisation avec des outils dédiés pour chaque service. AWS Lambda pour l’exécution de code sans serveur, Apache Kafka pour le traitement des flux de données en temps réel, et Snowflake pour le data warehousing sont des exemples de cette diversification des outils. Ou encore Azure Functions pour des scénarios d’intégration événementielle, et Google BigQuery pour l’analyse en volume des données.

Quels critères essentiels à prendre en compte dans votre choix d’architecture data ?

  1. Spécialisation vs. Intégration : L’architecture micro-services comprend la spécialisation (une fonction = un service), mais exige une intégration rigoureuse pour éviter la création de nouveaux silos.
  2. Infrastructure distribuée : Les micro-services optimisent l’efficacité et la scalabilité. AWS Lambda, par exemple, offre une solution de calcul sans serveur, tandis qu’un cluster Kubernetes est préférable pour des charges de travail plus lourdes et constantes. Azure et AWS offrent une variété de services qui s’alignent avec cette approche, comme Azure Event Hubs pour l’ingestion d’événements à grande échelle ou AWS Kinesis pour le streaming de données.
  3. Interopérabilité et gouvernance des données : L’interconnexion entre services est un enjeu majeur ! Les outils d’orchestration comme Apache Airflow peuvent aider … mais cela induit souvent des coûts supplémentaires et de la complexité. L’interopérabilité doit être intégrée dès la conception pour éviter des solutions de gouvernance onéreuses comme les catalogues de données ou des outils d’observabilité. Les services comme Azure Data Factory et AWS Glue facilitent l’orchestration de workflows data et l’intégration de services.
  4. Gestion des coûts : Les architectures microservices peuvent entraîner des coûts de transfert de données inattendus. Des outils comme Apache Kafka réduisent ces coûts en optimisant le traitement des données avant de les déplacer vers des solutions comme Snowflake. Les coûts de transfert et de stockage des données restent un point de vigilance. Les solutions comme Apache Kafka et les services de streaming de données peuvent minimiser ces coûts et optimiser le flux de données.

Architecture Data en micro-services ou monolithique ?

L’architecture choisie est essentielle car elle va déterminer l’efficacité de votre stratégie data. Dans un monde où les fournisseurs de cloud continuent d’innover et d’intégrer des services plus efficaces, les architectures modulaires en micro-services sont appelées à devenir encore plus interconnectées, performantes et économiques. L’avenir des données se dessine dans le cloud, où la complexité cède la place à la connectivité, à toujours plus d’agilité et à l’optimisation des coûts.


Pour aller plus loin :

Solutions IA en entreprises, les DSI au coeur du paradoxe

L’Intelligence Artificielle en entreprise, comment conjuguer innovations et défis technologiques ?

L’IA, une adoption massive par les DSI et des bénéfices évidents … mais des failles qui se creusent

Dans un monde où le progrès technologique est aussi rapide qu’inexorable, les Directeurs des Systèmes d’Information (DSI) jouent un rôle central. Ils doivent orchestrer l’adoption de l’intelligence artificielle (IA), une technologie qui promet de révolutionner non seulement la manière dont nous travaillons mais aussi comment nous envisageons le rapport entre l’humain et la machine. Selon le rapport 2024 Connectivity Benchmark de MuleSoft, 80% des entreprises sont déjà sur la voie de cette révolution et ont déjà adopté plusieurs modèles d’IA. Et cela va s’accélérer avec une augmentation prévue de 78% dans les trois années à venir.

Les gains sont tangibles :

  • une productivité accrue chez 85% des développeurs, selon les DSI.
  • Près de 50% des informaticiens considèrent que l’IA fait gagner du temps face à l’accroissement des tâches chronophage en gagnant cinq heures par semaine, afin de se consacrer aux travaux plus complexes difficiles à automatiser (étude « State of Workplace Technology » de Freshworks 2023)

Cependant, cette adoption ne va pas sans son lot de défis. L’intégration de l’IA dans les écosystèmes IT existants s’avère difficile pour 90% des DSI, avec des problématiques de sécurité et le défi incessant des silos de données qui freinent 80% des entreprises dans leur transformation numérique.

Le casse-tête du patrimoine informatique et l’impératif d’intégration inter-applicative

Imaginez gérer un patrimoine de près de 1000 applications différentes, dont la durée de vie moyenne est inférieure à quatre ans. Cette réalité est le quotidien de nombreuses entreprises, où seulement un quart d’entre elles réussissent notamment à offrir une expérience client multi-canal cohérente. L’intégration est devenu un impératif stratégique, mais aussi un défi colossal. Comment allier l’impératif de gestion d’un tel patrimoine avec celui de l’innovation continue ?

Sécurité et éthique : des considérations devenues primordiales

La sécurité et l’éthique de l’utilisation de l’IA sont au cœur des préoccupations pour 79% et 64% des DSI respectivement. Ces enjeux, souvent relégués au second plan lors de l’implémentation initiale de l’IA, se retrouvent désormais au premier plan, nécessitant une réaction rapide et conforme aux futures régulations, telles que l’AI Act européen qui sera pleinement en vigueur d’ici fin 2025.

Ainsi, si près de la moitié des DSI vont adopter une solution IA en 2024 … seulement 28% des applications y seront connectées.

Smartpoint, partenaire stratégique des DSI pour relever les défis de l’IA

Smartpoint se positionne comme le partenaire stratégique des DSI pour relever ces défis. Notre approche se focalise sur l’intégration intelligente de l’IA, soutenue par une gestion experte et responsable des données. Nous proposons :

  • Des stratégies d’intégration personnalisées, adaptées à l’environnement multi-applicatif des entreprises modernes.
  • Des solutions pour démanteler les silos de données, créant une gouvernance des données unifiée et efficace.
  • Une expertise pointue en matière de sécurité et d’éthique de l’IA pour assurer une conformité sans faille et une innovation éthique.

Êtes-vous prêt à transformer les défis de l’IA en opportunités ?

Source et pour aller plus loin :

Data, les top tendances 2024.

2023 a été très dense et rythmée notamment par les avancées technologiques spectaculaires de l’IA générative … mais pas que ! Exercice de début d’année oblige, Smartpoint, pure player data depuis 2006, vous dévoile ses prédictions pour 2024.

01

Une alternative pour outiller votre pipeline en open source ? C’est à lire ici avec notre top 5 outils.

04

L’adoption des grands modèles de langages (LLM) transforme l’interprétation des données sur de larges volumes et les rend compréhensibles pour le plus grand nombre. Ils ont d’ailleurs contribué à améliorer considérablement les performances du NLP.

Ils permettront de toujours mieux identifier des tendances, de mener des analyses plus fines et surtout plus pertinentes.

La conception et de le déploiement de modèles avancés de ML sont d’ailleurs devenus beaucoup plus accessibles (et rapides !) pour les ingénieurs data alors qu’ils étaient, jusqu’alors, réservés à des professionnels très expérimentés et spécialisés.

02

La Data Fabric fournit une vue unifiée avec un accès centralisé aux données et leur intégration dans un écosystème data distribué. Elle peut se connecter à des sources qui sont dans le cloud ou dans des environnements on-premise.

Le Data Mesh est une architecture décentralisée axée Domaine où les données sont traitées et gouvernées par des équipes qui en ont la responsabilité – comme un produit – permettant ainsi une infrastructure en libre service.

Leur adoption va permettre aux entreprises de gérer plus efficacement des écosystèmes toujours plus denses, et complexes ; de manière plus fluide, plus flexible et surtout plus évolutive dans la durée.

05

La Data a elle aussi sa part de responsabilité à assumer et c’est possible (à lire ici).

Ainsi, on devrait voir enfin des considérations liées à l’empreinte carbone influer sur les choix des entreprises. La futur est dans des solutions plus sobres et vertueuses dès la phase de conception, au plus juste des usages attendus, moins gourmandes en termes d’échanges de données ou encore en consommation de ressources (traitement, calculs, stockage).

L’impact environnemental des systèmes data va progressivement s’appréhender sur l’ensemble de leur cycle des vie, de leur développement à leur décommisionnement.

Les critères ESG vont venir réguler les pratiques et c’est une bonne nouvelle pour l’ensemble de la profession.

03

Ainsi, les tâches répétitives, chronophages et souvent sources d’erreurs sont prises en charge par des outils toujours plus intelligents notamment en nettoyage et intégration des données.

Il en est de même, grâce aux avancées en IA et en apprentissage automatique, pour le processus de data discovery et celui d’amélioration de la qualité des données (data quality) qui jusqu’alors demandaient beaucoup d’opérations manuelles.

06

écrivons ensemble le futur de la data et inventons les usages de demain.

Data Fabric, cette architecture de data management gagne du terrain et la gouvernance des données fait la différence.

La data fabric permet aux entreprises d’intégrer, de gérer, d’exploiter et d’analyser un volume toujours plus important de données issues de multiples sources (datalakes, applications, bases de données traditionnelles, plateformes cloud, etc.) en temps réel, en utilisant la puissance de l’IA et du ML pour automatiser notamment le traitement des données mais aussi le génération d’insights.

Elle permet surtout de rapprocher les consommateurs de données avec ceux qui sont en charge de son ingénierie !

Comment est ce que la Data Fabric améliore la gouvernance des données ? C’est dans le concept même de cette architecture. Rappelons en effet que les données sont traitées comme un produit et sont d’ailleurs nommées « Data Product ». Chaque data product est conçu comme la plus petite entité cohérente possible afin de favoriser la ré-usabilité des données dans différentes contextes ou usages de consommation.

Les données sont un actif développé, testé et mis à disposition d’utilisateurs qui les consomment. Chaque Data Product est sous la responsabilité d’une équipe propriétaire indépendante qui connait le domaine. Elle se porte garante de sa création, de son intégrité, de sa qualité, de son accessibilité, du delivery et de sa durabilité.

Les données sont créées via l’utilisation de modèles standardisés selon des normes de qualité. Elles sont donc testées pour s’assurer de leur fiabilité et de leur interopérabilité.

La Data Fabric vous permet d’avoir une vue d’ensemble unifiée de toute l’infrastructure data car toutes les données sont lisibles au même endroit. Les données sont interconnectées, fédérées et sécurisées.

Cette approche permet enfin de lutter efficacement sur les silos, de réduire les doublons de données, d’éliminer des cohérences et la sous-exploitation des données collectées. C’est également une meilleure optimisation du stockage et des ressources nécessaires au traitement.

Les utilisateurs ont également un accès facilité à des données temps réel, ce qui leur permet de tester, d’explorer, de découvrir des tendances, d’itérer plus rapidement et donc d’innover ou de réagir plus vite.

Réalisé avec DALL-E

Quels sont les principaux challenges pour intégrer votre Data Fabric ?

  • Complexité du Data Legacy qui ne permet pas l’interopérabilité et manque de flexibilité (et d’évolutivité)
  • Interopérabilité et standardisation alors que les entreprises ont de multiples outils et utilisent aujourd’hui plusieurs plateformes
  • Qualité des données et cela suppose souvent un chantier de nettoyage, redressement et normalisation qui peut être long
  • Intégration de sources diverses, disparates et généralement en silos
  • Gouvernance nécessaire et souvent complexe (gestion des métadonnées, compliance, sécurité, etc.) dans un environnement par nature distribué et dynamique
  • Manque de compétences en interne car c’est une approche best-of-breed
  • Résistance au changement
  • Maintenance continue dans la durée

BigQuery ou Snowflake ?

Tous deux sont leaders en cloud data warehouses mais quelle plateforme choisir ?

Ce n’est pas la même architecture, ni le même mode de facturation !

Snowflake utilise des capacités séparées de stockage (basé sur des objets) et de calcul (basé sur un modèle d’entrepôt virtuel). Ainsi, il offre de grandes capacités en termes de scalabilité, d’élasticité et de performance. Il permet de palier aux problèmes de sur-dimensionnement en utilisant seulement (et en ne payant) que les ressources dont les utilisateurs ont besoin. La plateforme est très appréciée pour sa facilité de configuration et d’utilisation.
Snowflake facture selon l’utilisation des capacités de stockage et la puissance de calcul nécessaire sur la base de crédit / heure.

BigQuery est serverless et donc augmente automatiquement les ressources en fonction des besoins. Les utilisateurs n’ont plus à se préoccuper de la gestion de l’infrastructure. Sa promesse ? Simplicité et facilité d’utilisation. Le stockage est en colonnes, il est donc optimisé pour les charges analytiques avec des requêtes rapides sur de larges volumes (contrairement aux formats traditionnels).

La couche de calcul est basée sur un modèle de « slots », les utilisateurs peuvent utiliser autant de requêtes qu’ils souhaitent, tant qu’ils ont les slots suffisants pour les lancer sur leurs volumes.
BigQuery facture en fonction des capacités de stockage (actif et inactif), le volume de traitement de données et les insertions en streaming.

A noter que BigQuery n’est disponible que sur Google Cloud … alors que Snowflake est agnostique, il est donc disponible sur toutes les principales plateformes AWS, Azure et GCP mais aussi opérant en cross-clouds.

Vous vous demandez quelle est la plateforme Data Cloud la mieux adaptée à vos besoins et à vos usages spécifiques ? Nos consultants vous accompagnent dans vos choix, laissez-nous un message, nous vous rappelons sous 24 heures.