Architecture Data,  micro-services ou monolithique ? Un choix déterminant pour votre infrastructure d’entreprise.

Alors qu’il existe une multitude d’outils et de solutions data qui s’offrent à vous ; vous devez vous interroger sur votre architecture Data – et sa roadmap – car c’est elle qui doit influencer votre stack technologique. Il ne s’agit pas tant de choisir entre architecture monolithique et architecture micro-services que de s’interroger sur la pertinence de votre stratégie data dont l’objectif est de soutenir votre business et vos capacités d’innovations dans la durée. Votre « vision data » va se traduire par une décision architecturale qui définit la manière dont votre entreprise gère et valorise ses données. Explications.

Du on-premise au cloud, c’est aussi une évolution architecturale !

Le paysage technologique des deux dernières décennies a connu une transformation radicale. Hier, les architectures de données étaient intrinsèquement en silos, chaque système fonctionnant en vase clos avec des degrés de compatibilité très limités. Les applications et les données étaient prisonnières d’infrastructures « on-premise » où l’intégration et l’interopérabilité étaient des défis majeurs (et des vrais centres de coûts) qui freinaient la collaboration et la pleine exploitation des données.

Aujourd’hui, le paradigme a basculé vers le « cloud », où se mêlent des configurations hybrides et des solutions on premise toujours très présentes. L’adoption d’architectures en micro-services a radicalement changé l’approche de la conception et de la gestion des données. Cependant, avec cette nouvelle liberté vient la responsabilité de choisir judicieusement parmi un large éventail d’outils éditeurs et de services offerts par divers cloud service providers (CSP). Les micro-services offrent un catalogue de services indépendants, chacun excellant dans sa spécialité et communiquant avec les autres via des interfaces bien définies.

Architectures Data, monolithique vs. micro-services

C’est la configuration traditionnelle que l’on rencontre encore dans la plupart des entreprises. Toutes les fonctions sont regroupée en un seul et unique bloc logiciel. Imaginons par exemple, un énorme référentiel Airflow qui gère à la fois l’ingestion, la transformation des données et l’automatisation des processus métier, comme un guichet unique pour toutes les opérations data.

Avec le cloud, les architectures data ont évolué vers un modèle de micro-services, où chaque service est autonome et spécialisé dans une fonction précise : gestion des données batch, transformation des données ou data warehousing. Citons pour exemples AWS Lambda, Apache Kafka, ou encore Snowflake choisis pour leur efficacité dans leurs domaines respectifs. Chaque service opère indépendamment, permettant une spécialisation et une adaptabilité qui étaient inimaginables dans les architectures en silos du passé.

Quel choix d’outil pour quelle architecture ?

Pour une architecture monolithique : Vous pouvez choisir des outils intégrés capables de gérer l’ensemble du cycle de vie des données au sein d’une même plateforme, tels que Talend ou Informatica. Les solutions comme Microsoft SQL Server Integration Services (SSIS) pour Azure peuvent convenir à ce type d’architecture en offrant un ensemble d’outils unifié.

Pour une architecture microservices : Vous optez pour la spécialisation avec des outils dédiés pour chaque service. AWS Lambda pour l’exécution de code sans serveur, Apache Kafka pour le traitement des flux de données en temps réel, et Snowflake pour le data warehousing sont des exemples de cette diversification des outils. Ou encore Azure Functions pour des scénarios d’intégration événementielle, et Google BigQuery pour l’analyse en volume des données.

Quels critères essentiels à prendre en compte dans votre choix d’architecture data ?

  1. Spécialisation vs. Intégration : L’architecture micro-services comprend la spécialisation (une fonction = un service), mais exige une intégration rigoureuse pour éviter la création de nouveaux silos.
  2. Infrastructure distribuée : Les micro-services optimisent l’efficacité et la scalabilité. AWS Lambda, par exemple, offre une solution de calcul sans serveur, tandis qu’un cluster Kubernetes est préférable pour des charges de travail plus lourdes et constantes. Azure et AWS offrent une variété de services qui s’alignent avec cette approche, comme Azure Event Hubs pour l’ingestion d’événements à grande échelle ou AWS Kinesis pour le streaming de données.
  3. Interopérabilité et gouvernance des données : L’interconnexion entre services est un enjeu majeur ! Les outils d’orchestration comme Apache Airflow peuvent aider … mais cela induit souvent des coûts supplémentaires et de la complexité. L’interopérabilité doit être intégrée dès la conception pour éviter des solutions de gouvernance onéreuses comme les catalogues de données ou des outils d’observabilité. Les services comme Azure Data Factory et AWS Glue facilitent l’orchestration de workflows data et l’intégration de services.
  4. Gestion des coûts : Les architectures microservices peuvent entraîner des coûts de transfert de données inattendus. Des outils comme Apache Kafka réduisent ces coûts en optimisant le traitement des données avant de les déplacer vers des solutions comme Snowflake. Les coûts de transfert et de stockage des données restent un point de vigilance. Les solutions comme Apache Kafka et les services de streaming de données peuvent minimiser ces coûts et optimiser le flux de données.

Architecture Data en micro-services ou monolithique ?

L’architecture choisie est essentielle car elle va déterminer l’efficacité de votre stratégie data. Dans un monde où les fournisseurs de cloud continuent d’innover et d’intégrer des services plus efficaces, les architectures modulaires en micro-services sont appelées à devenir encore plus interconnectées, performantes et économiques. L’avenir des données se dessine dans le cloud, où la complexité cède la place à la connectivité, à toujours plus d’agilité et à l’optimisation des coûts.


Pour aller plus loin :