IA et Automatisation intelligente : comment le Data Engineering se réinvente en 2025

Par Smartpoint, ESN spécialisée en ingénierie de la Data

Entre copilotes, auto-réparation, gouvernance augmentée et dashboards générés en langage naturel, le Data Engineering se transforme en profondeur. Smartpoint décrypte les grandes tendances data engineering IA 2025.

2025 restera comme l’année pivot où l’intelligence artificielle est devenue bien plus qu’un simple levier d’automatisation : elle devient un co-pilote du Data Engineering.

Tandis que l’IA générative redéfinit l’interface homme-donnée, le machine learning et les moteurs décisionnels automatisés transforment les pipelines, les outils et les rôles au sein des organisations. Ensemble, ces technologies redessinent le Data Engineering moderne. En effet, dans les grandes entreprises, plusieurs technologies d’intelligence artificielle coexistent, interagissent et s’intègrent dans les architectures SI pour répondre aux enjeux de performance, de scalabilité, de gouvernance et d’expérience utilisateur.

L’automatisation intelligente au cœur des pipelines de données

Les entreprises cherchent à toujours plus optimiser leurs pipelines Data, tout en garantissant qualité, fiabilité et adaptabilité. Cette automatisation prend plusieurs formes :

  • Génération de schémas dynamiques (IA générative) : des modèles de langage créent et ajustent automatiquement les structures de données en fonction des besoins métier comme, par exemple, des approches comme le reinforcement learning.
  • Détection d’anomalies en temps réel (Machine Learning) : les algorithmes repèrent les incohérences dans les données entrantes, sans règles codées manuellement. Des outils comme Apache Kafka et TensorFlow facilitent cette intégration.
  • Pipeline auto-réparateur (Automatisation intelligente) : des workflows peuvent désormais identifier et corriger des erreurs techniques de façon autonome.

Ces innovations transforment l’ingénierie data en une discipline pilotée par des agents intelligents, où la supervision humaine se concentre sur les cas d’exception.

Des données accessibles sans coder : vers la vraie démocratisation

Les interfaces conversationnelles, dopées par l’IA générative, ouvrent enfin la voie à une démocratisation réelle de l’accès aux données :

  • Requêtes en langage naturel (IA générative) : les utilisateurs métiers peuvent interroger les bases de données par simple dialogue, sans recourir au SQL ni à des outils BI complexes. Citons des outils comme Azure Copilot, Databricks IQ, Snowflake Cortex ou encore Gemini de Google.
  • Rapports générés automatiquement (IA générative + BI augmentée) : des tableaux de bord sont produits à la volée à partir d’instructions en langage naturel, intégrant parfois même des prévisions ou recommandations. Citons des solutions comme celle de Power BI avec Copilot, Qlik ou ThoughtSpot.
  • Assistants analytiques intégrés (copilotes décisionnels) : embarqués dans les outils métiers, ils proposent des KPIs, mettent en évidence des signaux faibles, et accompagnent les utilisateurs dans l’interprétation des données.

Ces avancées technologiques permettent de réduire la dépendance aux équipes IT pour les besoins analytiques courants. Les métiers bénéficient ainsi d’un accès direct à une expertise data contextualisée et immédiate, tandis que la DSI se positionne davantage comme facilitateur stratégique de l’innovation que comme simple fournisseur de services techniques.

Enfin, grâce à des mécanismes d’apprentissage actif, les modèles conversationnels s’améliorent progressivement via les retours utilisateurs, offrant une expérience toujours plus fine et pertinente.

DataOps + IA = pipelines agiles et auto-adaptatifs

L’intégration de l’IA dans les pratiques DataOps transforme profondément la façon dont les pipelines de données sont conçus, testés et supervisés. Elle permet de bâtir des architectures :

  • Plus fiables, grâce à des tests automatisés intelligents : Great Expectations par exemple permet de valider automatiquement les données à chaque étape du pipeline, avec des règles dynamiques et un monitoring continu.
  • Plus agiles, via une orchestration modulaire et versionnée : les pratiques CI/CD issues du DevOps sont désormais la norme dans le DataOps, avec un usage généralisé de Git, du versioning de pipelines, et du déploiement continu. Les dépendances sont gérées automatiquement pour limiter les erreurs humaines et améliorer le cycle de vie des développements.
  • Plus prédictifs, grâce à l’IA embarquée dans les outils d’observabilité : certaines solutions identifient les goulets d’étranglement avant qu’ils ne provoquent des interruptions de service, en analysant les métriques d’exécution, les logs et les historiques d’incidents.

Les outils de Data Observability évoluent rapidement pour intégrer ces capacités intelligentes. Par exemple, Dynatrace, via son moteur d’IA Davis, permet une traçabilité complète des flux et une analyse automatisée de la filiation des données, avec détection des causes racines en temps réel.

Sécurité et conformité : vers une gouvernance augmentée

Les nouvelles réglementations européennes (RGPD, EU AI Act, DORA) imposent aux DSI de repenser la gouvernance de la donnée dans une approche plus proactive, automatisée et éthique. L’IA intervient à plusieurs niveaux :

  • Surveillance intelligente de la conformité : des outils comme Informatica permettent de détecter en temps réel des écarts au RGPD, grâce à l’analyse sémantique des métadonnées et à l’identification automatique de données sensibles.
  • Calcul confidentiel (Privacy-Enhancing Computation) : des approches comme le chiffrement homomorphe, le MPC ou la privacy différentielle permettent de traiter les données sans jamais les exposer, renforçant la sécurité tout en respectant la législation.
  • Détection automatisée des biais : des plateformes comme DataRobot ou Hugging Face Evaluate intègrent des outils de monitoring des biais dans les datasets ou les modèles, pour garantir équité et transparence.

Cette nouvelle génération de solutions donne naissance à des Data Responsibility Platforms (DRP), offrant gouvernance, auditabilité et responsabilité algorithmique. Des acteurs comme OneTrust proposent déjà des fonctionnalités dédiées à l’AI Act, notamment pour l’automatisation des DPIA et la documentation des usages à haut risque.

Low-code + IA générative : l’ingénierie data entre toutes les mains ?

L’association des plateformes low-code/no-code et de l’IA générative repense la manière de concevoir des solutions data. Désormais, les utilisateurs peuvent prototyper voire déployer des applications data sans compétence avancée en développement. Une des avancées majeures réside dans la génération assistée de pipelines de données, où des interfaces graphiques alimentées par des modèles de langage (LLM) permettent de traduire une intention métier en architecture technique. Bien que ces assistants génèrent des blocs logiques cohérents, la prise en compte fine des contraintes d’exécution (performance, gestion des erreurs, scalabilité) nécessite encore une validation humaine assurée par les Data Engineers.

Par ailleurs, les plateformes intègrent de plus en plus des capacités d’automatisation intelligente des connexions aux systèmes métiers. Grâce au machine learning, elles analysent les schémas de données pour générer automatiquement des connecteurs ou mapper les champs entre systèmes hétérogènes, limitant donc la configuration manuelle. Ce type d’intégration accélère l’accès à la donnée pour les métiers, tout en fluidifiant les processus IT.

Cette évolution donne naissance à des cas d’usage autonomes au sein des fonctions métiers. Les départements finance, RH ou marketing peuvent désormais en théorie concevoir eux-mêmes leurs tableaux de bord ou leurs flux de transformation de données. Cela réduit leur dépendance vis-à-vis des équipes IT ou Data centralisées, tout en améliorant leur agilité dans l’exploitation de la donnée.

Pour les DSI, cette transformation est un véritable défi en termes de gouvernance. Ils se doivent d’orchestrer ces nouveaux usages, de poser les garde-fous nécessaires en matière de sécurité, de cohérence technique et de qualité des données.

Car si la promesse d’une « ingénierie data accessible aux métiers » semble devenir techniquement possible, il reste de nombreux freins bien réels :

  • L’illusion du no-code total : un niveau d’expertise reste indispensable pour vérifier et sécuriser les architectures générées par IA.
  • Une maturité technologique encore très variable : la performance des intégrations automatiques dépend largement de la qualité, de la structure et de la disponibilité des données sources.
  • Un écosystème fragmenté : la diversité des outils low-code/no-code freine l’intéropérabilité. L’absence de standards demande des efforts d’architecture et d’intégration.

Une IA économe, vers un Data Engineering durable ?

 

Si l’IA et l’automatisation transforment en profondeur les pratiques du Data Engineering, impossible d’ignorer désormais les enjeux de sobriété numérique. La montée en puissance des modèles génératifs et des orchestrateurs intelligents appelle une réflexion sur leur coût environnemental. En réponse, les équipes Data adoptent des approches plus durables : sélection d’algorithmes plus sobres, planification des traitements en heures creuses, ou encore déploiement dans des infrastructures green.

Les plateformes d’automatisation intelligente intègrent progressivement des mécanismes de régulation énergétique ou de priorisation des flux, s’inscrivant dans une logique de DataOps éco-conçu. Une dimension importante pour les DSI qui sont pour la plupart de plus en plus sensibles à un meilleur alignement entre innovation technologique et performance durable.

Tableau récapitulatif : technologies d’IA et leurs usages en data engineering

Cas d’usageType d’IA / technologieObjectif principal
Génération automatique de schémasIA générative (LLM)Adapter dynamiquement les structures de données
Détection d’anomaliesMachine learning supervisé/nonGarantir l’intégrité des données en temps réel
Pipelines auto-réparateursAutomatisation intelligenteRéduire les interruptions et maintenir la continuité
Requêtes en langage naturelIA générative (NLP avancé)Faciliter l’accès à la donnée
Dashboards générés à la voléeIA générative + outils BIAccélérer l’analyse métier
Maintenance prédictiveML + Data ObservabilityPrévenir les pannes ou goulets d’étranglement
Gouvernance éthique des donnéesIA générative + MLIdentifier biais, risques, non-conformités
Plateformes low-code/no-code avec copilotesIA générative + automatisationDémocratiser la création de pipelines
Calcul confidentiel et chiffrementPrivacy Enhancing Tech + IAProtéger les données sensibles
Optimisation énergétique des traitementsIA classique + orchestrationRéduire l’empreinte carbone de l’architecture data
Tableau des cas d’usage de l’IA en Data Engineering 2025

Le Data Engineering a toujours été un métier en changement perpétuel mais le rythme s’accélère. Grâce à l’IA, à l’automatisation intelligente et à des outils de plus en plus accessibles, les organisations repensent leur rapport à la data. Pour les DSI, il ne s’agit plus seulement de gérer l’infrastructure, mais d’orchestrer un écosystème d’innovation responsable, distribué et piloté par la valeur métier.

Chez Smartpoint, nous accompagnons les DSI et Responsables Data dans la transformation de leurs architectures et de leurs pratiques vers un Data Engineering plus agile, automatisé et durable. Grâce à notre expertise en XOps (DataOps, MLOps, AIOps), en IA générative et en gouvernance augmentée, nous aidons les grandes entreprises à tirer parti des dernières innovations tout en maîtrisant les enjeux de sécurité, de conformité et de performance. Notre approche pragmatique et co-construite permet de structurer des solutions à fort impact métier, tout en assurant leur pérennité technologique dans un écosystème en constante évolution.

Source :

  • Arnab Sen « 2025’s Game-Changers: The Future of Data Engineering Unveiled »
2025’s Game-Changers: The Future of Data Engineering Unveiled

Vous vous interrogez sur quelle démarche adopter ? Quelle architecture ou quels outils choisir ? Vous avez besoin de compétences spécifiques sur vos projets ? Challengez-nous !

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    IA, Cloud et IoT – Les piliers technologiques des DSI

    Les prévisions (ABI Research) pour les cinq prochaines années mettent en exergue des transformations profondes qui impacteront considérablement les stratégies des DSI et des Responsables Data. l’intelligence Artificielle et une gestion toujours plus poussées des données s’imposent comme des leviers majeurs en terme de compétitivité, nécessitant une approche proactive et structurée pour répondre aux défis d’un écosystème en mutation rapide.

    L’évolution à un rythme effréné des technologies redéfinit en profondeur les stratégies des DSI et des Responsables Data. À l’horizon 2025, trois piliers technologiques se distinguent comme étant les principaux leviers de transformation : l’Intelligence Artificielle et le Machine Learning, le Cloud et l’IoT. Ces innovations, bien que distinctes, convergent pour façonner un nouvel écosystème.

    1. Intelligence Artificielle et Machine Learning : De l’expérimentation à l’industrialisation

    L’IA générative et le Machine Learning sont en passe de devenir des composants essentiels des infrastructures IT. Selon ABI Research, les dépenses en modèles de langage à grande échelle (LLM) connaîtront une croissance annuelle de 35 %, révélant une adoption de plus en plus généralisée au sein des entreprises. Toutefois, la vision par ordinateur (Computer Vision) reste dominée par des modèles traditionnels, les modèles de vision à large échelle (LVM) peinant encore à démontrer un ROI convaincant.

    Pour les DSI, l’industrialisation de l’IA nécessitera une intégration hybride entre les modèles traditionnels et les approches basées sur l’IA générative. La maîtrise des coûts, la protection des données et la scalabilité des infrastructures seront des priorités absolues pour une adoption réussie.

    2. Le Cloud et la montée en puissance du modèle hybride

    Le Cloud va poursuivre son évolution vers des architectures hybrides et souveraines, permettant aux entreprises de concilier agilité, performance et conformité réglementaire. ABI Research prévoit que d’ici 2029, le volume de données industrielles dépassera 4 zettaoctets, accentuant encore davantage la nécessité d’un traitement efficace et sécurisé des données.

    Pour les DSI, l’adoption d’un cloud hybride est. un impératif pour assurer la flexibilité des ressources et une gouvernance des données renforcée. La mise en place de data fabrics permettra de standardiser et d’intégrer les données issues de multiples sources, favorisant des analyses avancées et une meilleure prise de décision.

    3. IoT et connectivité intelligente : Une explosion des cas d’usage

    L’Internet des Objets (IoT) s’impose comme un accélérateur d’innovation dans les environnements industriels et urbains. ABI Research prévoit que le marché des réseaux privés 5G pour l’IoT atteindra 75,9 milliards de dollars d’ici 2030, bien que sa croissance soit légèrement revue à la baisse par rapport aux prévisions initiales. Les dispositifs IoT de suivi des chaînes d’approvisionnement continuent également leur développement, répondant aux exigences accrues de traçabilité et d’optimisation logistique.

    Pour les DSI, l’essor de l’IoT impose de sécuriser les flux de données, d’intégrer des plateformes de gestion IoT robustes et d’optimiser la connectivité pour exploiter pleinement le potentiel des réseaux intelligents.

    IA, Cloud et IoT – Une convergence stratégique inéluctable

    L’IA, le Cloud et l’IoT ne sont plus des choix technologiques optionnels, mais des leviers stratégiques incontournables. Leur intégration dans l’écosystème IT permettra aux entreprises de gagner en résilience, en compétitivité et en efficacité opérationnelle.

    Pour les DSI, la capacité à orchestrer ces technologies de manière cohérente et à anticiper les défis liés à leur déploiement sera un facteur clé de différenciation. L’avenir appartient aux organisations qui sauront exploiter la puissance des données et des infrastructures intelligentes pour innover et se transformer durablement. Vous avez besoin de vous faire accompagner sur ces chantiers ? Contactez Smartpoint.

    AI over RPA : l’automatisation intelligente pour des processus plus complexes

    L’automatisation des processus métier a longtemps reposé sur le Robotic Process Automation (RPA), une technologie qui a fait ses preuves pour les tâches répétitives et structurées. Cependant, le RPA traditionnel atteint rapidement ses limites dès que les processus impliquent des données non structurées ou nécessitent une prise de décision plus avancée. C’est là que l’IA entre en jeu, transformant le RPA en une solution d’automatisation intelligente, ou « AI over RPA ».

    Pourquoi AI over RPA ?

    L’intérêt de combiner l’IA avec le RPA n’est plus à prouver dans l’écosystème de l’automatisation. Une étude de Gartner prédit que d’ici 2024, 60 % des organisations qui ont mis en place des initiatives de RPA auront intégré des technologies d’IA pour les rendre plus performantes. En effet, alors que le RPA classique ne peut automatiser que des tâches basées sur des règles strictes, l’ajout de l’IA permet de traiter des processus complexes et de gérer des données non structurées. Selon une autre enquête menée par Deloitte, l’automatisation intelligente, combinant RPA et IA, pourrait permettre aux entreprises de réduire leurs coûts d’exploitation de 20 à 25 % dans les trois prochaines années.

    Une flexibilité accrue pour des données complexes

    Là où le RPA seul se limite à exécuter des tâches prédéfinies basées sur des règles, l’IA permet d’interpréter et d’analyser des données non structurées, comme des images, du texte ou même des vidéos. Par exemple, avec des technologies d’IA telles que le traitement du langage naturel (NLP) et la vision par ordinateur, le RPA devient capable de traiter des documents, d’extraire des informations utiles et de répondre à des requêtes avec une compréhension contextuelle. Cela représente un gain de temps considérable dans des secteurs comme la banque et l’assurance, où les documents complexes, tels que les formulaires et les réclamations, sont courants.

    Des décisions en temps réel et un apprentissage continu

    En intégrant des modèles d’apprentissage automatique, AI over RPA permet aux entreprises de prendre des décisions basées sur des analyses en temps réel. Par exemple, dans un contexte de service client, un chatbot piloté par AI over RPA peut analyser le profil d’un client et adapter ses réponses en fonction de l’historique des interactions. Cette capacité de personnalisation permet de fournir un service plus précis et de mieux satisfaire les attentes des clients.

    AI over RPA ne se contente pas d’exécuter les tâches, mais il apprend et s’améliore au fil du temps. Grâce aux données recueillies, les algorithmes de machine learning affinent leurs analyses et deviennent de plus en plus performants, offrant une automatisation de plus en plus intelligente. Selon une étude d’IDC, les entreprises ayant adopté AI over RPA ont pu augmenter leur productivité de 32 % en moyenne grâce à l’automatisation adaptative et intelligente.

    Les bénéfices pour les entreprises

    Pour les entreprises, cette approche hybride apporte plusieurs avantages stratégiques :

    • Flexibilité accrue : Là où le RPA classique nécessitait une reconfiguration manuelle pour chaque changement de processus, AI over RPA s’adapte automatiquement aux nouveaux types de données et aux exigences en évolution.
    • Réduction des coûts et des erreurs : L’automatisation intelligente réduit non seulement les coûts en optimisant les ressources, mais elle diminue aussi les risques d’erreurs humaines dans les processus critiques.
    • Amélioration de l’expérience client : Avec l’IA, le RPA peut fournir des réponses plus pertinentes et personnalisées, améliorant ainsi l’engagement et la satisfaction client. Selon Forrester, les entreprises qui investissent dans AI over RPA constatent une amélioration de 15 à 25 % de la satisfaction client en moyenne.

    Quels outils choisir pour l’implémentation d’AI over RPA ?

    Lorsqu’il s’agit de choisir des solutions d’AI over RPA, plusieurs acteurs dominent le marché avec des offres intégrant à la fois RPA et IA. Parmi les leaders, UiPath propose une plateforme robuste et évolutive avec des fonctionnalités d’automatisation intelligentes, notamment le traitement du langage naturel et l’analyse de documents. Elle permet aux entreprises de combiner facilement les robots RPA et les algorithmes d’IA, offrant une excellente flexibilité pour automatiser des processus complexes.

    Automation Anywhere est une autre solution de premier plan, particulièrement appréciée pour son architecture cloud-native et ses fonctionnalités d’apprentissage automatique intégrées. Cette plateforme fournit des outils spécifiques pour traiter les données non structurées, tout en simplifiant l’analyse des workflows et la prise de décision en temps réel.

    SS&C Blue Prism, initialement positionnée sur le RPA classique, a évolué pour intégrer l’intelligence artificielle et le machine learning dans son offre. Sa plateforme « Connected-RPA » permet de créer des chaînes de travail intelligentes et est particulièrement appréciée des grandes entreprises pour sa sécurité et sa scalabilité.

    En dehors ces solutions, d’autres acteurs ont également des outils intéressants. Microsoft Power Automate, par exemple, offre une intégration fluide avec l’écosystème Microsoft et se distingue par sa capacité à traiter des tâches d’automatisation intelligentes via Azure AI et ses modèles de machine learning. Pour les entreprises déjà engagées dans l’environnement Microsoft, Power Automate peut être une option intéressante en termes de coûts et de synergies.

    Enfin, IBM Watson Orchestrate est une solution qui gagne en popularité, notamment pour les projets nécessitant une IA avancée pour l’analyse de données non structurées. En s’appuyant sur l’écosystème IBM Watson, cette plateforme permet aux entreprises d’automatiser des processus complexes nécessitant des capacités analytiques poussées.

    L’avenir de l’automatisation passe par AI over RPA !

    AI over RPA représente l’avenir de l’automatisation intelligente en entreprise. Il permet non seulement de surmonter les limites du RPA traditionnel, mais aussi de fournir une solution agile, évolutive et capable de répondre aux besoins des organisations modernes. Dans un monde où la gestion des données et l’efficacité opérationnelle sont des priorités, AI over RPA s’impose comme un levier de compétitivité majeur pour les entreprises qui souhaitent rester à la pointe de l’innovation.

    Sources :

    1. Gartner – « 60% of Organizations Will Supplement RPA with AI Capabilities by 2024 »
    2. Deloitte – « Global RPA Survey: Unlocking the potential of automation »
    3. IDC – « The Impact of AI and Machine Learning on Business Productivity »
    4. Forrester – « How AI-Driven RPA Enhances Customer Experience »

    AIOps, l’avenir des opérations IT grâce à l’intelligence artificielle

    L’AIOps (Artificial Intelligence for IT Operations) est en train de révolutionner la gestion des opérations informatiques en utilisant l’intelligence artificielle (IA) et le machine learning (ML) pour automatiser la détection, l’analyse et la résolution des incidents IT. Dans un contexte où les environnements IT deviennent de plus en plus complexes, l’AIOps permettent d’ores et déjà d’optimiser les performances des systèmes et de réduire drastiquement la charge des équipes IT.

    L’AIOps, ou Artificial Intelligence for IT Operations, connaît une croissance rapide à l’échelle mondiale, tirée par le besoin croissant d’automatiser et d’optimiser la gestion des infrastructures IT complexes. En 2023, le marché mondial de l’AIOps est estimé entre 25 et 27 milliards USD et devrait atteindre entre 79 et 112 milliards USD d’ici 2030, avec un taux de croissance annuel moyen (CAGR) situé entre 18 % et 37 %. Par ailleurs, les applications d’analyse en temps réel et de gestion des performances applicatives (APM) sont les plus adoptées par les entreprises, avec l’analyse en temps réel représentant environ 35 % du marché actuel.

    Quels sont les avantages de l’AIOps pour les DSI ?

    1. Détection proactive et réduction des interruptions

    L’un des avantages majeurs des solutions AIOps est leur capacité à détecter les anomalies en amont des incidents. En analysant des volumes massifs de données et en identifiant les comportements inhabituels, les solutions AIOps permettent aux équipes IT de repérer les problèmes avant qu’ils ne deviennent critiques. Cette détection préventive réduit les interruptions de service, améliore la disponibilité des applications, et limite l’impact sur les utilisateurs.

    2. Réduction des délais de résolution (MTTR)

    Grâce aux capacités de diagnostic automatisé et d’analyse des causes racines, les solutions AIOps permettent de réduire le Mean Time to Resolve (MTTR) des incidents. En fournissant des recommandations basées sur l’analyse des données historiques et des algorithmes de machine learning, les équipes IT peuvent identifier la source des problèmes plus rapidement et prendre les mesures correctives appropriées. Cela augmente l’efficacité opérationnelle et garantit une réactivité accrue face aux incidents.

    3. Automatisation des tâches répétitives

    Les solutions AIOps intègrent des fonctionnalités d’automatisation qui permettent de déléguer les tâches répétitives et à faible valeur ajoutée aux machines. Par exemple, des tâches comme le redémarrage de serveurs, la gestion des configurations ou la réponse aux alertes basiques peuvent être automatisées. Cela libère les équipes IT pour des activités plus stratégiques et réduit les risques d’erreurs humaines dans les processus de routine.

    4. Amélioration de l’expérience utilisateur

    En assurant une surveillance continue et en intervenant proactivement pour prévenir les incidents, l’AIOps contribue à maintenir une expérience utilisateur fluide et fiable. Les utilisateurs finaux sont moins impactés par les pannes et les ralentissements de services, ce qui améliore leur satisfaction et renforce la confiance dans les services IT de l’entreprise.

    5. Réduction du bruit d’alerte et hiérarchisation des incidents

    Dans les environnements IT complexes, le bruit d’alerte (ou « alert noise ») est un problème majeur, avec des équipes souvent submergées par des notifications redondantes ou non critiques. Les solutions AIOps, telles que Moogsoft ou Digitate ignio™, réduisent le bruit d’alerte en corrélant les événements similaires et en hiérarchisant les alertes selon leur gravité. Cela aide les équipes IT à se concentrer sur les incidents réellement critiques et à éviter les distractions causées par les alertes moins pertinentes.

    6. Analyse prédictive et intelligence contextuelle

    Les solutions AIOps utilisent des algorithmes de machine learning pour identifier des tendances et des schémas cachés dans les données IT. Ces informations permettent d’anticiper les incidents potentiels en fonction des comportements passés, offrant ainsi une gestion prédictive des opérations IT. Par exemple, les plateformes comme IBM Watson AIOps et Dynatrace sont capables d’identifier les schémas de dégradation de performance pour prévenir des interruptions futures.

    7. Intégration multi-cloud et flexibilité des environnements

    Les solutions AIOps sont conçues pour s’adapter aux environnements multi-cloud et hybrides, ce qui permet aux entreprises de surveiller l’ensemble de leur infrastructure IT sans interruption, quel que soit le type de plateforme ou de fournisseur utilisé. Cette flexibilité est cruciale dans un monde où les entreprises adoptent des architectures IT de plus en plus diversifiées, avec des applications réparties entre plusieurs clouds publics, privés et locaux.

    8. Optimisation des coûts IT

    En automatisant la gestion des opérations et en réduisant le temps passé sur la résolution d’incidents, les solutions AIOps contribuent à réduire les coûts opérationnels. De plus, en prévenant les interruptions et en limitant les pannes, elles diminuent les pertes financières liées aux interruptions de service. Les entreprises peuvent ainsi optimiser l’allocation de leurs ressources et réduire les dépenses tout en maintenant un haut niveau de performance.

    9. Amélioration de la résilience et de la sécurité

    Les solutions AIOps, en surveillant en continu l’infrastructure IT, détectent rapidement les comportements suspects ou les menaces potentielles, ce qui renforce la cybersécurité et la résilience des systèmes. En intégrant la détection des anomalies et l’automatisation des réponses aux menaces, l’AIOps peut prévenir les failles de sécurité avant qu’elles ne deviennent des incidents majeurs.

    10. Adaptation en temps réel aux besoins de l’entreprise

    Enfin, les solutions AIOps sont évolutives et adaptatives. Elles ajustent en temps réel leurs modèles de machine learning en fonction des changements dans l’infrastructure IT, garantissant ainsi que les analyses et les recommandations restent pertinentes. Cela permet aux entreprises de rester agiles et de réagir rapidement face aux évolutions technologiques et aux nouvelles exigences opérationnelles.

    Quelles solutions d’AIOps ?

    Plusieurs solutions existent dans le domaine de l’AIOps, chacune avec ses propres avantages et spécialités. Voici notre sélection chez Smartpoint.

    1. Splunk : Centralisation des données et analyse en temps réel

    Splunk est reconnu pour sa capacité à traiter et à analyser d’immenses volumes de données en temps réel. Sa plateforme de gestion des logs et des métriques est devenue un atout majeur pour les équipes IT qui souhaitent :

    • Détecter et anticiper les incidents grâce à une surveillance proactive qui analyse en temps réel les données de l’ensemble de l’infrastructure IT.
    • Identifier les anomalies à l’aide de modèles d’apprentissage automatique qui établissent une norme de comportement et détectent les écarts.
    • Gagner en réactivité en centralisant toutes les données IT en un seul endroit, permettant aux équipes d’identifier rapidement les causes profondes des problèmes.

    Grâce à ses capacités de visualisation et à une interface intuitive, Splunk aide les DSI à obtenir une vision globale et contextuelle de leur infrastructure, facilitant des interventions précises et rapides.

    2. Dynatrace : Observabilité complète et IA intégrée

    Dynatrace est particulièrement apprécié pour sa capacité d’observabilité full-stack et de surveillance des environnements IT complexes, notamment ceux basés sur le cloud et les microservices. Les fonctionnalités clés de Dynatrace incluent :

    • Une analyse automatisée des dépendances entre applications, ce qui permet de diagnostiquer rapidement les problèmes en cas de panne dans un environnement multi-niveaux.
    • Une IA intégrée nommée Davis, qui analyse les données en continu, détecte les anomalies et fournit une analyse des causes racines en temps réel, offrant ainsi une résolution rapide des incidents.
    • Une vue unifiée qui couvre l’ensemble de l’infrastructure : applications, microservices, conteneurs et réseaux.

    Avec Dynatrace, les DSI bénéficient d’une solution complète pour surveiller en permanence leur infrastructure IT et réagir de manière proactive aux incidents, réduisant ainsi les interruptions de service et optimisant l’expérience utilisateur.

    3. IBM Watson AIOps : Intelligence avancée et multi-cloud

    IBM Watson AIOps est une solution de gestion des opérations IT basée sur l’intelligence artificielle, conçue pour détecter et résoudre les incidents en temps réel dans des environnements multi-cloud et hybrides. Les principales fonctionnalités d’IBM Watson AIOps sont :

    • L’analyse des logs et des alertes pour détecter des schémas et identifier les causes racines, facilitant ainsi une résolution proactive des problèmes.
    • L’intégration fluide avec des environnements multi-cloud et hybrides, ce qui en fait un outil idéal pour les entreprises avec des infrastructures IT diversifiées.
    • Des recommandations basées sur l’analyse de données historiques, ce qui permet d’améliorer la résilience et la rapidité de réponse face aux incidents.

    IBM Watson AIOps offre une approche orientée sur la prévention des incidents, ce qui permet aux DSI d’anticiper et de résoudre les problèmes avant qu’ils n’affectent les opérations.

    4. Digitate ignio™ : Automatisation intelligente et gestion proactive

    Digitate ignio™ se concentre sur l’automatisation intelligente et la gestion proactive des opérations IT.

    • L’automatisation des tâches IT répétitives telles que le redémarrage de serveurs ou le déploiement de correctifs, réduisant la charge de travail des équipes et limitant les erreurs humaines.
    • La détection proactive des incidents grâce au machine learning, en identifiant les problèmes avant qu’ils ne se transforment en incidents, permettant ainsi une résolution anticipée.
    • L’analyse des causes racines et l’intelligence contextuelle qui permet de comprendre les interconnexions des systèmes et d’identifier la source initiale des incidents.
    • La réduction du bruit d’alerte en regroupant et en corrélant les alertes, permettant une gestion des incidents plus efficace et ciblée.

    Digitate ignio™ offre une gestion complète des opérations IT en automatisant les tâches, en réduisant le nombre de fausses alertes et en optimisant les ressources humaines pour des interventions plus stratégiques.

    L’AIOps, avec des solutions comme Splunk, Dynatrace, IBM Watson AIOps et Digitate ignio™, permettent une gestion des opérations IT plus automatisée, proactive et intelligente. En intégrant l’IA et le machine learning, ces plateformes permettent aux entreprises de réduire les temps de résolution, d’améliorer la disponibilité des systèmes et de se concentrer sur l’optimisation des performances IT. Grâce à l’AIOps, les entreprises peuvent bénéficier d’une infrastructure plus résiliente, réduire leurs coûts et offrir une expérience utilisateur de meilleure qualité. En adoptant ces technologies, les entreprises prennent une longueur d’avance dans un monde où les environnements IT sont de plus en plus complexes et exigeants.

    Sources :

    Le futur des infrastructures Data se dessine avec l’IA !

    Chez Smartpoint, nous assistons à une nouvelle révolution industrielle axée sur la génération d’intelligence grâce à l’IA … et cette révolution nécessite des infrastructures adaptées aux nouvelles exigences des entreprises, notamment en matière de gestion de volumes massifs et diversifiés de données. Nous pensons que le prochain axe majeur d’investissement sera la couche d’infrastructure de données, indispensable pour donner vie à des applications d’IA personnalisées.

    L’infrastructure de données : fondation de la révolution IA

    Les infrastructures de données doivent évoluer pour gérer des données non structurées à grande échelle, telles que les vidéos, images, audios, et même les données spatiales ! Avec l’essor de l’IA générative (GenAI), la qualité des données devient primordiale, non seulement pour l’entraînement des modèles, mais aussi pour leur inférence. La capacité à acquérir, nettoyer, transformer et organiser ces données est désormais un facteur clé de réussite.

    D’ailleurs, le marché mondial des infrastructures IA connaît une croissance fulgurante. Il est estimé à 68,46 milliards de dollars en 2024 et pourrait atteindre 171,21 milliards de dollars d’ici 2029, avec un taux de croissance annuel moyen (CAGR) de 20,12 %. Cette progression est alimentée par l’adoption rapide de l’IA dans des secteurs variés, allant des grandes entreprises aux startups​.

    Automatisation et pipelines de données optimisés par l’IA

    L’une des principales avancées concerne l’automatisation des pipelines de données. Grâce à l’IA, des workflows end-to-end peuvent être mis en place pour gérer le traitement des données non structurées, de leur extraction à leur stockage en passant par leur transformation. Cela inclut des technologies comme le chunking (fractionnement des données en petites portions), l’indexation et la génération d’embeddings (représentations vectorielles) qui permettent une recherche plus rapide et pertinente. Cette approche devient indispensable dans des applications d’IA conversationnelle et d’agents autonomes​.

    Impact de l’inférence IA et essor de l’edge computing

    L‘inférence IA, qui consiste à utiliser des modèles pour prendre des décisions en temps réel, est en pleine essor. Cet engouement est notamment soutenu par le edge computing, qui rapproche le traitement des données de leur source pour réduire les latences et optimiser les performances, tout en minimisant les coûts liés à la transmission des données vers le cloud. Cette technologie devient primordiale dans des secteurs tels que l’industrie manufacturière et évidemment la santé​.

    La récupération augmentée (RAG) : maximiser l’efficacité des applications IA

    Une des innovations majeures observées dans les infrastructures de données est la génération augmentée par récupération (RAG). Cette méthode permet aux entreprises d’activer leurs données pour fournir des réponses plus précises et à jour via des modèles de langage (LLM). En combinant les données internes avec des requêtes, le RAG permet d’améliorer considérablement la fiabilité et la personnalisation des réponses générées par l’IA. Cela constitue un avantage concurrentiel pour les entreprises qui cherchent à fournir des expériences utilisateurs plus précises et crédibles​.

    Une gestion éthique et durable des données

    Chez Smartpoint, nous croyons fermement à l’importance d’une gestion responsable et éthique des infrastructures de données. Nous nous engageons à éviter le Data Swamp, où des données non pertinentes s’accumulent, en nous concentrant sur la collecte et l’exploitation des données à forte valeur ajoutée. Cette approche permet non seulement d’améliorer la performance opérationnelle, mais aussi de respecter les régulations en matière de confidentialité, telles que le RGPD, tout en adoptant une démarche durable pour un usage plus responsable des ressources informatiques.

    … Une infrastructure résiliente pour un avenir axé sur l’IA

    Les infrastructures de données sont en pleine transformation sous l’impulsion de l’IA. Chez Smartpoint, pure player data depuis 2006, nous aidons nos clients à adapter leur architecture aux besoins croissants de l’IA, tout en assurant une gestion responsable et éthique des données. Ces évolutions permettront non seulement d’améliorer les performances des modèles IA, mais aussi d’offrir aux entreprises les moyens de se démarquer dans un marché toujours plus compétitif.

    LAISSEZ-NOUS UN MESSAGE

    Les champs obligatoires sont indiqués avec *.

      Prénom*

      Nom*

      Société*

      E-mail*

      Téléphone*

      Objet*

      Message

      Testing automatisé augmenté par l’IA, notre top 5 outils 2024

      L’intégration de l’intelligence artificielle (IA) dans les processus de testing représente une avancée majeure dans le domaine de la qualité logicielle (QA). En 2024, l’IA continue de transformer les pratiques de testing en offrant des gains jusqu’alors inégalés en termes de productivité, de qualité, et de réduction des coûts.

      Voici un aperçu des principaux bénéfices pour nos clients et le top 5 des outils de testing augmentés à l’IA recommandés par nos experts Smartpoint de la practice « Test automation & AI » accompagné de quelques exemples concrets d’utilisation de l’IA dans les tests.

      Les bénéfices du testing augmenté à l’IA pour nos clients

      1/ Amélioration de la Qualité Logicielle

      L’IA permet d’identifier les défauts plus tôt et bien plus précisément que les tests manuels, réduisant ainsi le nombre de bugs et améliorant la qualité globale du logiciel. Les capacités d’apprentissage automatique de l’IA permettent également de générer des cas de tests exploratoires, couvrant ainsi des scénarios que les tests traditionnels auraient du mal à identifier.

      2/ Réduction des coûts :

      L’automatisation des tests permet de réduire drastiquement les coûts de main-d’œuvre et d’optimiser l’utilisation des ressources. 66 % des entreprises ont réussi à réduire leurs coûts de 21 à 50 % grâce à l’automatisation des tests. (Source enquête Qualitest). Moins de bugs en production signifie également moins de coûts associés à la correction des erreurs post-livraison.

      3/ Accélération du Time-to-Market

      L’IA permet d’exécuter des tests en continu et en parallèle, ce qui accélère le processus de validation et permet une mise sur le marché plus rapide des produits. C’est également plus d’adaptabilité car l’IA s’adapte rapidement aux changements dans le code. Les délais liés aux ajustements des tests sont également réduits. 56% des entreprises ont réduit le temps de test de 35 à 65% grâce à l’IA (Source Xray)

      4/ Amélioration de l’efficacité

      L’IA surveille et analyse les performances des applications en temps réel, permettant une identification rapide des problèmes et une optimisation continue. 73 % des entreprises affirment que l’IA a amélioré l’efficacité de leurs tests. (Source : Xray)

      cas usages ia dans le stests

      Cas d’usages de l’IA dans les tests

      Tests unitaires automatisés : Si le code est bien géré avec des pratiques appropriées de gestion de la configuration logicielle, les algorithmes d’analyse du code peuvent être utilisés pour automatiser les tests unitaires, assurant une couverture complète et réduisant les erreurs humaines.

      Tests d’API Automatisés : Dans le cas d’une architecture microservices, les algorithmes peuvent générer automatiquement des tests d’API, assurant que chaque service communique correctement avec les autres, ce qui améliore l’intégrité du système.

      Génération automatisée de données de test : En surveillant les données de production, des algorithmes de régression peuvent générer automatiquement des données de test synthétiques, assurant que les tests sont représentatifs des conditions réelles.

      Prédiction des goulets d’étranglement : En utilisant les journaux opérationnels, des algorithmes de régression peuvent prédire les goulets d’étranglement et les points de référence en matière de performance, permettant une optimisation proactive.

      Automatisation des scripts de développement axés sur le comportement : Les algorithmes de traitement du langage naturel peuvent convertir des récits d’utilisateurs rédigés en langage simple en formats Gherkin, créant ainsi des tests automatisés basés sur le comportement utilisateur.

      Optimisation basée sur l’Analyse des Défauts : En se focalisant sur les zones à risque en utilisant des données historiques propres aux défauts, des algorithmes de corrélation peuvent identifier les fonctionnalités les plus sujettes aux défauts, permettant aux équipes de se concentrer sur ces zones lors des tests.

      Détermination des scénarios critiques : En analysant les comportements des utilisateurs en production, des algorithmes d’apprentissage non supervisés peuvent identifier les scénarios les plus importants à tester, optimisant ainsi la couverture des tests.

      Notre Top 5 des outils de testing augmentés à l’IA à adopter en 2024

      1. Selenium

      Selenium est un outil de testing open source largement utilisé pour l’automatisation des tests web. Avec l’intégration de frameworks IA, Selenium améliore la capacité à détecter et à corriger les erreurs plus efficacement.

      Avantages ? Flexibilité, large adoption, compatibilité avec de nombreux langages de programmation.

      2. Applitools

      Spécialisé dans les tests visuels, Applitools utilise l’IA pour valider les interfaces utilisateur en comparant automatiquement les captures d’écran à des versions de référence.

      Avantages ? Amélioration de la qualité UI/UX, réduction des erreurs visuelles.

      3. Testim

      Testim utilise l’IA pour créer, exécuter et maintenir des tests automatisés avec une grande précision. Il améliore continuellement les scripts de test en apprenant des modifications de l’application.

      Avantages ? Réduction des temps de maintenance des tests, meilleure détection des changements dans l’application.

      4. Katalon Studio

      Une plateforme de tests unifiée qui utilise l’IA pour automatiser les tests web, API, mobiles et desktop. Katalon Studio offre des fonctionnalités avancées d’analyse des tests et d’optimisation.

      Avantages ? Facilité d’utilisation, large couverture de tests.

      5. Functionize

      Functionize combine l’apprentissage automatique et le traitement du langage naturel pour créer des tests adaptatifs. Il offre une reconnaissance visuelle et des tests automatisés basés sur des scénarios utilisateurs réels.

      Avantages ? Tests adaptatifs, réduction des efforts de scriptage.

      Le testing augmenté à l’IA est un domaine en pleine évolution qui offre de nombreux avantages aux entreprises et aux clients. En 2024, l’adoption de cette technologie devrait s’accélérer, avec des outils et des solutions encore plus puissants disponibles sur le marché. Les entreprises qui investissent dans le testing augmenté à l’IA seront en mesure d’améliorer la qualité de leurs logiciels, d’offrir une meilleure expérience utilisateur, de réduire leurs coûts et de mettre leurs produits sur le marché plus rapidement. L’implémentation de l’IA dans les processus de testing est un levier puissant pour améliorer la qualité, la productivité et l’efficacité tout en réduisant les coûts. En 2024, les outils de testing augmentés à l’IA continuent d’évoluer, offrant des fonctionnalités toujours plus sophistiquées et une intégration plus étroite avec les processus de développement logiciel.

      Vous souhaitez intégrer l’automatisation et l’IA dans vos processus de test ? Challengez-nous !


      LAISSEZ-NOUS UN MESSAGE

      Les champs obligatoires sont indiqués avec *.

        Prénom*

        Nom*

        Société*

        E-mail*

        Téléphone*

        Objet*

        Message

        Testing et l’Intelligence Artificielle pour Smartpoint

        Le développement des technologies d’intelligence artificielle (IA) transforme profondément le domaine du testing logiciel. Les DSI voient en l’IA une opportunité pour améliorer l’efficacité, la précision et la couverture des tests. Voici comment l’IA révolutionne les pratiques de testing et offre des stratégies pour intégrer ces avancées dans les processus de développement logiciel.

        On estime que l’IA peut augmenter la couverture de test jusqu’à 30% et réduire les coûts de 20%

        Forrester

        1. L’Impact de l’IA sur le Testing Logiciel

        L’IA permet une automatisation intelligente des tests. Elle génère automatiquement des cas de test en analysant les exigences logicielles, ce qui couvre un plus grand nombre de scénarios avec une précision accrue. De plus, les algorithmes de machine learning peuvent détecter et s’adapter aux changements dans le code, réduisant ainsi l’effort manuel nécessaire pour mettre à jour les scripts de test. Par exemple, l’IA peut automatiser les tests unitaires, les tests d’intégration, les tests de bout en bout et les tests de performance.

        En matière de détection des anomalies, l’IA analyse les logs d’exécution et les comportements des applications pour identifier des anomalies subtiles. Grâce à l’apprentissage continu, elle optimise les processus de test et améliore la détection des défauts.

        L’IA joue également un rôle crucial dans les pratiques de DevOps. Elle facilite l’intégration continue en permettant des tests automatisés qui s’exécutent parallèlement aux déploiements, assurant une validation rapide et efficace du code. Les algorithmes d’IA peuvent aussi prédire les impacts des modifications et déterminer les meilleures stratégies de déploiement pour minimiser les risques et les interruptions.

        2. Stratégies pour Intégrer l’IA dans les Processus de Testing

        Pour intégrer l’IA dans les processus de testing, il est essentiel de bien évaluer et sélectionner les outils d’IA. Une analyse des besoins spécifiques en matière de testing et des Proof of Concept (PoC) permettent de tester les capacités des outils d’IA avant leur déploiement à grande échelle. Chez Smartpoint, nous utilisons notamment Applitools, Selenium, Testim, Katalon Studio, Eggplant, Functionize, Umicore, UFT, BrowserStack, Test.AI, AutonomIQ ou encore Sealights.

        La formation des équipes est également cruciale. Il est important de former les équipes de développement et de test aux nouvelles technologies et outils d’IA, et d’encourager une culture de l’innovation.

        Ensuite, il est nécessaire de s’assurer que les nouveaux outils d’IA s’intègrent avec les processus existants. Commencer par automatiser les tâches répétitives et chronophages, puis étendre progressivement l’utilisation de l’IA à des domaines plus complexes du testing, garantit une adoption fluide.

        3. Avantages et Défis de l’IA dans le Testing

        L’intégration de l’IA dans le testing logiciel offre plusieurs avantages. Elle améliore l’efficacité des tests, permet de couvrir un plus grand nombre de scénarios et de configurations, et améliore la détection des défauts. Cependant, elle pose également des défis, tels que la complexité de mise en œuvre, la dépendance à la qualité des données de formation, et la résistance au changement des équipes.

        Voici quelques exemples d’applications concrètes de l’IA dans le testing :

        • L’IA peut être utilisée pour générer des données de test réalistes à partir de données historiques ou de simulations. Cela peut être particulièrement utile pour tester des applications qui traitent de grandes quantités de données.
        • L’IA peut être utilisée pour identifier des cas de test critiques en analysant le code source et les exigences d’une application. Cela permet de s’assurer que les tests les plus importants sont exécutés en premier.
        • L’IA peut être utilisée pour prédire les échecs de test en analysant les résultats des tests précédents. Cela permet d’anticiper les problèmes et de prendre des mesures préventives.

        L’intégration de l’intelligence artificielle dans le testing logiciel représente une avancée majeure pour les DSI et les grandes entreprises. En adoptant des stratégies bien planifiées et en surmontant les défis inhérents, les organisations peuvent tirer parti des capacités de l’IA pour améliorer la qualité, l’efficacité et la rapidité de leurs processus de développement logiciel. Smartpoint, en tant qu’ESN spécialisée en ingénierie de la data, est idéalement positionnée pour guider les entreprises dans cette transformation et leur permettre de tirer pleinement parti des innovations en matière de testing et d’IA.

        LAISSEZ-NOUS UN MESSAGE

        Les champs obligatoires sont indiqués avec *.

          Prénom*

          Nom*

          Société*

          E-mail*

          Téléphone*

          Objet*

          Message