IA, Cloud et IoT – Les piliers technologiques des DSI

Les prévisions (ABI Research) pour les cinq prochaines années mettent en exergue des transformations profondes qui impacteront considérablement les stratégies des DSI et des Responsables Data. l’intelligence Artificielle et une gestion toujours plus poussées des données s’imposent comme des leviers majeurs en terme de compétitivité, nécessitant une approche proactive et structurée pour répondre aux défis d’un écosystème en mutation rapide.

L’évolution à un rythme effréné des technologies redéfinit en profondeur les stratégies des DSI et des Responsables Data. À l’horizon 2025, trois piliers technologiques se distinguent comme étant les principaux leviers de transformation : l’Intelligence Artificielle et le Machine Learning, le Cloud et l’IoT. Ces innovations, bien que distinctes, convergent pour façonner un nouvel écosystème.

1. Intelligence Artificielle et Machine Learning : De l’expérimentation à l’industrialisation

L’IA générative et le Machine Learning sont en passe de devenir des composants essentiels des infrastructures IT. Selon ABI Research, les dépenses en modèles de langage à grande échelle (LLM) connaîtront une croissance annuelle de 35 %, révélant une adoption de plus en plus généralisée au sein des entreprises. Toutefois, la vision par ordinateur (Computer Vision) reste dominée par des modèles traditionnels, les modèles de vision à large échelle (LVM) peinant encore à démontrer un ROI convaincant.

Pour les DSI, l’industrialisation de l’IA nécessitera une intégration hybride entre les modèles traditionnels et les approches basées sur l’IA générative. La maîtrise des coûts, la protection des données et la scalabilité des infrastructures seront des priorités absolues pour une adoption réussie.

2. Le Cloud et la montée en puissance du modèle hybride

Le Cloud va poursuivre son évolution vers des architectures hybrides et souveraines, permettant aux entreprises de concilier agilité, performance et conformité réglementaire. ABI Research prévoit que d’ici 2029, le volume de données industrielles dépassera 4 zettaoctets, accentuant encore davantage la nécessité d’un traitement efficace et sécurisé des données.

Pour les DSI, l’adoption d’un cloud hybride est. un impératif pour assurer la flexibilité des ressources et une gouvernance des données renforcée. La mise en place de data fabrics permettra de standardiser et d’intégrer les données issues de multiples sources, favorisant des analyses avancées et une meilleure prise de décision.

3. IoT et connectivité intelligente : Une explosion des cas d’usage

L’Internet des Objets (IoT) s’impose comme un accélérateur d’innovation dans les environnements industriels et urbains. ABI Research prévoit que le marché des réseaux privés 5G pour l’IoT atteindra 75,9 milliards de dollars d’ici 2030, bien que sa croissance soit légèrement revue à la baisse par rapport aux prévisions initiales. Les dispositifs IoT de suivi des chaînes d’approvisionnement continuent également leur développement, répondant aux exigences accrues de traçabilité et d’optimisation logistique.

Pour les DSI, l’essor de l’IoT impose de sécuriser les flux de données, d’intégrer des plateformes de gestion IoT robustes et d’optimiser la connectivité pour exploiter pleinement le potentiel des réseaux intelligents.

IA, Cloud et IoT – Une convergence stratégique inéluctable

L’IA, le Cloud et l’IoT ne sont plus des choix technologiques optionnels, mais des leviers stratégiques incontournables. Leur intégration dans l’écosystème IT permettra aux entreprises de gagner en résilience, en compétitivité et en efficacité opérationnelle.

Pour les DSI, la capacité à orchestrer ces technologies de manière cohérente et à anticiper les défis liés à leur déploiement sera un facteur clé de différenciation. L’avenir appartient aux organisations qui sauront exploiter la puissance des données et des infrastructures intelligentes pour innover et se transformer durablement. Vous avez besoin de vous faire accompagner sur ces chantiers ? Contactez Smartpoint.

Testing et l’Intelligence Artificielle pour Smartpoint

Le développement des technologies d’intelligence artificielle (IA) transforme profondément le domaine du testing logiciel. Les DSI voient en l’IA une opportunité pour améliorer l’efficacité, la précision et la couverture des tests. Voici comment l’IA révolutionne les pratiques de testing et offre des stratégies pour intégrer ces avancées dans les processus de développement logiciel.

On estime que l’IA peut augmenter la couverture de test jusqu’à 30% et réduire les coûts de 20%

Forrester

1. L’Impact de l’IA sur le Testing Logiciel

L’IA permet une automatisation intelligente des tests. Elle génère automatiquement des cas de test en analysant les exigences logicielles, ce qui couvre un plus grand nombre de scénarios avec une précision accrue. De plus, les algorithmes de machine learning peuvent détecter et s’adapter aux changements dans le code, réduisant ainsi l’effort manuel nécessaire pour mettre à jour les scripts de test. Par exemple, l’IA peut automatiser les tests unitaires, les tests d’intégration, les tests de bout en bout et les tests de performance.

En matière de détection des anomalies, l’IA analyse les logs d’exécution et les comportements des applications pour identifier des anomalies subtiles. Grâce à l’apprentissage continu, elle optimise les processus de test et améliore la détection des défauts.

L’IA joue également un rôle crucial dans les pratiques de DevOps. Elle facilite l’intégration continue en permettant des tests automatisés qui s’exécutent parallèlement aux déploiements, assurant une validation rapide et efficace du code. Les algorithmes d’IA peuvent aussi prédire les impacts des modifications et déterminer les meilleures stratégies de déploiement pour minimiser les risques et les interruptions.

2. Stratégies pour Intégrer l’IA dans les Processus de Testing

Pour intégrer l’IA dans les processus de testing, il est essentiel de bien évaluer et sélectionner les outils d’IA. Une analyse des besoins spécifiques en matière de testing et des Proof of Concept (PoC) permettent de tester les capacités des outils d’IA avant leur déploiement à grande échelle. Chez Smartpoint, nous utilisons notamment Applitools, Selenium, Testim, Katalon Studio, Eggplant, Functionize, Umicore, UFT, BrowserStack, Test.AI, AutonomIQ ou encore Sealights.

La formation des équipes est également cruciale. Il est important de former les équipes de développement et de test aux nouvelles technologies et outils d’IA, et d’encourager une culture de l’innovation.

Ensuite, il est nécessaire de s’assurer que les nouveaux outils d’IA s’intègrent avec les processus existants. Commencer par automatiser les tâches répétitives et chronophages, puis étendre progressivement l’utilisation de l’IA à des domaines plus complexes du testing, garantit une adoption fluide.

3. Avantages et Défis de l’IA dans le Testing

L’intégration de l’IA dans le testing logiciel offre plusieurs avantages. Elle améliore l’efficacité des tests, permet de couvrir un plus grand nombre de scénarios et de configurations, et améliore la détection des défauts. Cependant, elle pose également des défis, tels que la complexité de mise en œuvre, la dépendance à la qualité des données de formation, et la résistance au changement des équipes.

Voici quelques exemples d’applications concrètes de l’IA dans le testing :

  • L’IA peut être utilisée pour générer des données de test réalistes à partir de données historiques ou de simulations. Cela peut être particulièrement utile pour tester des applications qui traitent de grandes quantités de données.
  • L’IA peut être utilisée pour identifier des cas de test critiques en analysant le code source et les exigences d’une application. Cela permet de s’assurer que les tests les plus importants sont exécutés en premier.
  • L’IA peut être utilisée pour prédire les échecs de test en analysant les résultats des tests précédents. Cela permet d’anticiper les problèmes et de prendre des mesures préventives.

L’intégration de l’intelligence artificielle dans le testing logiciel représente une avancée majeure pour les DSI et les grandes entreprises. En adoptant des stratégies bien planifiées et en surmontant les défis inhérents, les organisations peuvent tirer parti des capacités de l’IA pour améliorer la qualité, l’efficacité et la rapidité de leurs processus de développement logiciel. Smartpoint, en tant qu’ESN spécialisée en ingénierie de la data, est idéalement positionnée pour guider les entreprises dans cette transformation et leur permettre de tirer pleinement parti des innovations en matière de testing et d’IA.

LAISSEZ-NOUS UN MESSAGE

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message