data platform stack technologique 2022

Data Platform, le point sur la stack technologique dont vous avez besoin.

Les technologies open source comme propriétaires sont pléthores. Certains éditeurs affirment qu’ils prennent en charge toutes les couches nécessaires, d’autres outils sont quant à eux plus spécialisés sur une brique en particulier.  Par ailleurs, vous avez aussi des actifs technologiques, des investissements passés et des spécificités propres à votre activité qui vous impose un choix best-of-breed.

Bien entendu en fonction de votre secteur d’activité, la structure de votre entreprise, votre consommation de données et l’exploitation que vous souhaitez en faire, la combinaison des outils et des technologies ne sera pas la même ! Et non, Il n’existe pas de solution « standard »…

Une plateforme de données se décompose dans les faits en différents composants essentiels ou couches : la capture des données, le stockage et le traitement, la transformation, la modélisation, la BI et les Analytics, l’observabilité et enfin la data discovery. Voici un rapide état des lieux.

  1. L’ingestion des données ou process d’extraction des données (structurées ou non) à partir de multiples sources de données. Même s’il est possible de développer votre propre framework spécifique, il existe aujourd’hui pléthore de solutions reconnues comme Informatica, Talend, IBM (Datastage) Fivetran, Denodo (…) mais aussi des outils en open source comme Stitch, Airbyte, Apache Kafka (event streaming). Il est également recommandé de mettre en place une orchestration des tâches et une automatisation des flux de travail avec Apache Airflow et Dagster par exemple.
  2. Le stockage et le traitement des données. Avec le move-to-the-cloud, de nombreuses alternatives au stockage on-premise existent désormais pour plus de flexibilité et d’évolutivité dans la durée avec les data Warehouses cloud natifs, les data lakes et les data lakehouses. Entre d’ailleurs Snowflake et Databricks, qui choisir, nous vous invitons à lire https://www.smartpoint.fr/choisir-snowflake-databricks/. L’architecture serverless de BigQuery (Google) est également intéressante pour la rapidité des requêtes et des traitements sans compter que Google vient de lancer BigLake pour la gouvernance et l’analyse de données en provenance de DW et de datalakes répartis sur différents clouds. Citons également Microsoft Azure, Amazon Redshift et à suivre Firebolt (SQL) pour les performances.
  3. La transformation puis la modélisation des données. Oracle, IBM et SSIS (Microsoft) sont incontournables en termes de solutions proposées ainsi que l’outil leader en open source, dbt (data build tool). Dataform (qui fait partie de GCP depuis 2 ans) est également un outil intéressant pour cette étape qui permet de préparer les données pour l’étape la plus importante pour vos utilisateurs : l’analyse !
  4. La BI et les analytics. Cette couche est le graal de toute Data Cloud Platform car c’est ici que les données vont prendre du sens. Les outils sont de plus en plus visuels, intuitifs et interactifs. Citons les incontournables Power BI (MS), Qlik, Tableau et Microstrategy mais aussi Looker (environnement big data / google), Mode (Datascience avec R), ThoughtSpot et Yellowfin. Les solutions sont très nombreuses et la bonne solution dépend surtout des choix que vous avez fait dans la stack technologique qui constitue votre plateforme de données … Voici le classement de Gartner https://www.gartner.com/reviews/market/analytics-business-intelligence-platforms
  5. L’observabilité des données. Vous devez pouvoir compter sur des données de confiance, fiables et exploitables. Cette couche de monitoring des données vous permet de surveiller et d’être alertés sur les anomalies : la fraicheur, la manière dont elles sont distribuées, le respect du format, si elles ont été altérées, le lineage, etc. Cela vous permet également de cartographier les incidents. En termes de solutions, les acteurs sont nombreux entre ceux qui viennent des solutions de surveillance de l’infrastructure IT ou des failles de sécurité, sans parler des pure players. Citons les solutions d’IBM, Dynatrace, Splunk, DataDog, Microsoft et encore AWS.
  6. La data discovery. Cette nouvelle génération d’outils vient remplacer le fameux dictionnaire ou catalogue de données qui historiquement était fait de manière manuelle donc par nature peu évolutif et qui a atteint ses limites. En effet, les flux de données se multiplient, elles sont de plus en complexes, volumétriques, en temps réel et non structurées. La data discovery permet d’explorer vos données pour trouver des dépendances, faire émerger des tendances, des modèles ou au contraire identifier des anomalies qui vont demander une exploration plus approfondie. Ces solutions sont désormais enrichies en machine learning pour une vue exhaustive et en temps réel de l’ensemble de vos actifs … alors même que vos données évoluent. Chez Smartpoint, nous utilisons les solutions de SAS Visual Analytics et de Tibco.

Pour aller plus loin :

https://towardsdatascience.com/the-quick-and-dirty-guide-to-building-your-data-platform-2f21dc4b7c94

Partager cet article