differences datalake data lakehouse data warehouse

Back to the basics ! Zoom sur les différences entre un data warehouse dans le cloud, un data lake et data lakehouse.

  • Un data Warehouse est une base de données analytique centralisée qui stocke les données déjà structurées. Il est utilisé par des analystes qui maîtrisent parfaitement le langage SQL et savent donc manipuler les données. Les données sont optimisées et transformées pour être accessibles très rapidement à des fins d’analyses, de génération de rapports et des tableaux de bords de pilotage des entreprises.
  • Un data lake collecte et stocke lui aussi des données mais il a été conçu pour traiter les Big Data, c’est-à-dire pour de fortes volumétries de données brutes, non structurées ou semi-structurées. Les data lakes sont à privilégier dans le cas d’un traitement en continu et d’une gestion en temps réel des données. Les données sont généralement stockées en prévision d’une utilisation ultérieure. Comme elles sont de natures brutes et non traitées, il est nécessaire de faire appel à un Data Scientist lorsqu’on souhaite les exploiter. Généralement, le datalake est utilisé pour le traitement par lots. Il permet notamment l’utilisation d’ELT en libre-service (par ex Informatica) pour automatiser l’ingestion et le traitement des données, ce qui permet de réduire la complexité de la conception et la maintenance des pipelines de données.
  • Un data Lakehouse, c’est une nouvelle architecture qui réconcilie en théorie le meilleur des deux mondes entre l’entrepôt de donnée et le data lake en une seule plateforme ! Le data lakehouse permet d’éviter la multiplication des moteurs de requêtes en exécutant des analyses directement dans le data lake lui-même.

À suivre ? les solutions proposées par Databricks …

Partager cet article

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.