Agents autonomes, la V2 des chatbots et les solutions IA à suivre.


Les chatbots ont initié une première révolution dans l’automatisation des interactions client. Mais ils ont leur limite : des réponses souvent rigides, un manque de compréhension contextuelle et une incapacité à évoluer sans intervention humaine. Aujourd’hui, une nouvelle génération émerge : les agents autonomes. Infusés aux technologies avancées d’intelligence artificielle, ces agents vont au-delà des simples conversations préprogrammées. Ils comprennent des situations complexes, s’adaptent à divers contextes et prennent des décisions de manière indépendante pour exécuter des tâches de plus en plus complexes. Ils ne sont plus de simples exécutants, mais de véritables collaborateurs digitaux, capables de transformer les processus internes et l’expérience client.


Qu’est-ce qu’un agent autonome ?

Un agent autonome est une entité logicielle alimentée par l’intelligence artificielle, agissant de manière indépendante pour accomplir des tâches complexes. Contrairement aux chatbots traditionnels, les agents autonomes comprennent le contexte des interactions grâce à des technologies avancées comme le traitement du langage naturel (NLP) et l’intelligence artificielle générative. Ils analysent des données en temps réel, prennent des décisions adaptées et évoluent au fil des interactions grâce à des algorithmes d’apprentissage automatique. Par exemple, un agent autonome peut non seulement répondre à une demande client complexe, mais aussi analyser des données transactionnelles et déclencher des actions, telles que la révision d’un contrat ou la résolution proactive d’un problème technique.

Pourquoi les agents autonomes sont-ils la V2 des chatbots ?

Alors que les chatbots traditionnels reposent sur des règles simples et sont limités à des tâches prédéfinies, les agents autonomes révolutionnent les interactions car ils sont capables d’apprendre de leur environnement. Là où les chatbots se contentent de répondre à des questions standards, les agents autonomes gèrent des processus avec plusieurs étapes en tenant compte du contexte global de l’utilisateur. En combinant l’intelligence artificielle générative et des algorithmes de machine learning, ils offrent des interactions plus naturelles et personnalisées. De plus, ils prennent l’initiative en détectant des opportunités ou des problèmes avant même qu’un humain ne les identifie. Par exemple, alors qu’un chatbot bancaire répond simplement à des questions sur les horaires d’ouverture ou le solde du compte, un agent autonome analyse les habitudes financières du client pour lui proposer un produit adapté et automatiser les démarches nécessaires pour y souscrire.

Quels avantages apportent les agents autonomes ?

Les agents autonomes transforment profondément l’expérience client. Ils offrent des interactions fluides et sur-mesures, même pour des demandes complexes, tout en garantissant une disponibilité 24h/24 et 7j/7. Sur le plan opérationnel, ces agents permettent une automatisation des tâches répétitives mais également des processus métier complexes, réduisant ainsi les erreurs humaines et optimisant les ressources internes. Une autre force majeure réside dans leur capacité à prendre des décisions proactives. En analysant des données en temps réel, ils anticipent les besoins des utilisateurs et déclenchent des actions sans intervention humaine, augmentant ainsi l’efficacité et la satisfaction des clients. Selon Gartner, d’ici 2028, 33 % des applications logicielles d’entreprise intégreront des agents autonomes, permettant à 15 % des décisions quotidiennes d’être prises de manière autonome.

Quels défis accompagnent leur adoption ?

L’adoption des agents autonomes nécessite de relever plusieurs défis. D’un point de vue technologique, leur intégration repose sur des algorithmes d’intelligence artificielle avancés qui demandent des compétences techniques mais aussi fonctionnelles pour comprendre parfaitement les besoins métier. La cybersécurité est également un enjeu majeur, car ces systèmes manipulent souvent des données sensibles. Par ailleurs, il est essentiel de préparer les équipes internes à collaborer avec ces « nouveaux collègues digitaux », en intégrant ces agents dans les workflows existants et en formant les collaborateurs à exploiter pleinement leurs capacités. Enfin, ces agents se nourrissent de données, vous devez vous assurer de les alimenter avec des informations fiables sous risque que les décisions prises soient inadaptées et surtout hors contrôle. C’est tout le débat avec l’intelligence artificielle, vous devez établir des garde-fous !

Quelles perspectives pour les agents autonomes ?

Les agents autonomes représentent l’avenir des interactions numériques et ouvrent la voie à une autonomie encore plus grande. À l’avenir, ces outils pourraient gérer intégralement des projets ou des opérations complexes, sans intervention humaine. Leur intégration avec des modèles d’intelligence artificielle générative promet également des interactions encore plus contextuelles et naturelles. Ces avancées ne se limiteront pas à un secteur, les agents autonomes transformeront profondément les modèles actuels. Forrester identifie les agents autonomes comme une technologie émergente majeure pour 2025, avec un large panel de cas d’utilisation, allant des interactions avec les consommateurs aux opérations commerciales.

Quelles solutions technologiques pour concevoir des agents autonomes ?

Le développement d’agents autonomes repose sur un écosystème technologique qui mixe intelligence artificielle conversationnelle, traitement du langage naturel (NLP) et capacités décisionnelles avancées. Plusieurs solutions émergent comme des leaders dans ce domaine, offrant aux entreprises des outils robustes pour concevoir et intégrer ces nouveaux « collaborateurs digitaux ».

SoundHound AI et Amelia : des agents conversationnels avancés

SoundHound AI, reconnu pour son expertise en IA conversationnelle, a récemment acquis Amelia, une solution d’IA de pointe spécialisée dans les interactions complexes. Cette synergie permet aux entreprises de déployer des agents autonomes capables d’interpréter des requêtes complexes, de prendre des décisions en temps réel et de gérer des processus métier dans divers secteurs tels que la santé, la finance ou l’hôtellerie. Ces solutions combinent traitement du langage naturel (NLP) avancé et apprentissage automatique pour offrir une expérience client fluide tout en optimisant les processus internes.

DRUID : une plateforme agile pour l’IA conversationnelle

DRUID est une solution spécialisée dans la création d’agents conversationnels personnalisés et adaptables aux besoins de divers secteurs. Sa force réside dans sa capacité à intégrer des modèles de langage avancés et à collaborer avec des plateformes RPA comme UiPath pour gérer des flux de travail complexes. DRUID se distingue également par sa flexibilité, permettant aux entreprises de concevoir des agents sur mesure qui s’intègrent harmonieusement à leurs systèmes existants.

LangChain et Auto-GPT : frameworks open source pour agents autonomes

Des outils comme LangChain et Auto-GPT offrent des options pour concevoir des agents autonomes évolutifs. Ces frameworks open source permettent de développer des solutions flexibles, capables d’interagir avec divers outils et d’exécuter des tâches complexes grâce à une intégration avec des API et des données en temps réel. Ces outils sont particulièrement utiles pour les entreprises souhaitant expérimenter ou prototyper des agents autonomes avant un déploiement à grande échelle.

Microsoft Copilot Studio : création d’agents autonomes sur mesure

Microsoft a également lancé récemment des agents autonomes avec Copilot Studio, disponible en préversion publique. Cette fonctionnalité permet aux organisations de repenser leurs processus métier critiques grâce à l’IA, en s’appuyant sur le contexte de leurs données d’entreprise provenant de Microsoft 365 Graph, de systèmes de sauvegarde, de Dataverse et de Fabric.


Les agents autonomes ne se contentent pas de remplacer les chatbots traditionnels : ils réinventent totalement les interactions numériques en alliant compréhension contextuelle, prise de décision proactive et apprentissage continu. En s’appuyant sur des technologies avancées comme le NLP, le machine learning et l’intelligence artificielle générative, ces outils deviennent de véritables collaborateurs digitaux, capables de transformer aussi bien l’expérience client que les processus métier complexes.

Cependant, la mise en œuvre de ces agents ne s’improvise pas. Elle nécessite une compréhension fine des besoins métier, des compétences techniques pour intégrer les technologies choisies et une approche structurée pour garantir la fiabilité des données et la sécurité des systèmes. Pour les entreprises, cela représente un défi, mais surtout une opportunité majeure de se positionner comme des leaders dans leur secteur.

Chez Smartpoint, ESN pure player de la data, nous avons les compétences et l’expertise nécessaires pour vous accompagner dans cette transformation. Que ce soit pour expérimenter via un Proof of Concept (POC) ou pour déployer un projet d’agent autonome à l’échelle de votre entreprise, nous mettons à votre disposition des experts en IA et data, ainsi qu’un savoir-faire éprouvé dans l’intégration de solutions innovantes.

Prenez contact avec nos équipes dès aujourd’hui pour découvrir comment les agents autonomes peuvent accélérer votre transformation digitale. Ensemble, lançons votre projet et donnez à votre entreprise un avantage compétitif décisif dans un monde piloté par l’intelligence artificielle.

Souces :

Vous vous interrogez sur quelle démarche adopter ? Quelle architecture ou quels outils choisir ? Vous avez besoin de compétences spécifiques sur vos projets ? Challengez-nous !

Les champs obligatoires sont indiqués avec *.

    Prénom*

    Nom*

    Société*

    E-mail*

    Téléphone*

    Objet*

    Message

    Agents AI, Modèles LLM et l’économie des tokens, une nouvelle révolution industrielle numérique ?

    L’émergence des Large Language Models (LLMs) et des agents AI redéfinissent la manière dont les entreprises interagissent avec les systèmes numériques. Alors que ces technologies transforment la production, elles inaugurent également une nouvelle économie basée sur les tokens et les ressources informatiques, créant une concurrence féroce entre les géants technologiques. Aujourd’hui, la capacité à exécuter des modèles LLM localement devient cruciale pour répondre aux besoins de confidentialité et d’efficacité des entreprises. Des outils comme LM Studio et Jan permettent désormais aux entreprises de tirer parti des LLMs sans avoir à envoyer leurs données à des serveurs distants.

    L’économie des tokens, la nouvelle monnaie de l’IA ?

    Les tokens sont la base de l’économie des LLMs. Un token est une unité de texte utilisée par les LLMs pour traiter et générer des réponses. Ces tokens servent de monnaie d’échange pour les services IA, en mesurant la valeur des tâches effectuées par les modèles, qu’il s’agisse de rédiger un article, d’analyser des données ou d’effectuer des calculs complexes.

    Les entreprises investissent des milliards dans le développement des LLMs, où les coûts sont souvent calculés en fonction du nombre de tokens utilisés. Les modèles LLM sont jugés selon trois critères principaux : la qualité, la latence, et le coût de génération des tokens. Par exemple, des entreprises comme OpenAI ont réduit le coût de génération de tokens de GPT-4 de 80 % en un an et demi, facilitant l’intégration de cette technologie dans des applications à grande échelle.

    L’émergence des LLMs locaux pour préserver la confidentialité et gagner en efficacité

    De nombreuses entreprises cherchent des solutions pour exécuter des LLMs localement afin de garantir une confidentialité maximale des données. Des outils comme LM Studio, Jan et GPT4ALL permettent aux utilisateurs d’exécuter des LLMs sans connexion à des serveurs distants, en gardant toutes les données localement sur leurs machines. Cela offre plusieurs avantages :

    1. Confidentialité : Les LLMs locaux permettent de traiter des données sensibles sans les envoyer à des API externes. C’est un atout essentiel pour de nombreux secteurs d’activité où les préoccupations en matière de protection des données sont critiques.
    2. Personnalisation : Ces outils offrent des options avancées de personnalisation, permettant de configurer des paramètres tels que la température, la longueur du contexte ou les threads CPU, tout en restant compatibles avec plusieurs plateformes (Windows, Mac, Linux).
    3. Coûts réduits : Contrairement aux services en ligne où chaque requête API est facturée, les LLMs locaux ne nécessitent pas d’abonnement mensuel, ce qui permet de réduire les coûts, surtout pour des entreprises qui exécutent des milliers de tâches quotidiennes.

    Les agents AI et l’appel d’outils pour plus de modularité et d’actions exécutables

    Dans le cadre des agents AI, l’utilisation de LLMs locaux permet d’enrichir les capacités d’interaction tout en garantissant une efficacité accrue. Les Large Action Models (LAMs), qui transforment les réponses textuelles en actions exécutables, jouent un rôle clé dans l’automatisation des tâches complexes en temps réel. Ces agents AI sont capables d’appeler des outils externes pour exécuter des tâches spécifiques, comme des appels API, des recherches d’information ou des calculs.

    Les modèles LLM locaux peuvent être utilisés pour configurer des serveurs d’inférence locaux, imitant les capacités d’API comme celles d’OpenAI, sans jamais connecter l’application à Internet. Par exemple, des outils comme LM Studio permettent aux développeurs de configurer un serveur HTTP local pour accéder à des modèles comme Mistral ou Llama 3.1, facilitant ainsi l’intégration dans des workflows IA sans compromettre la confidentialité des données.

    Défis et avantages des LLMs Locaux

    Si les LLMs locaux offrent des avantages indéniables en termes de confidentialité et de coûts, ils présentent également certains défis :

    1. Ressources matérielles : L’exécution de LLMs localement nécessite des ressources matérielles spécifiques, notamment des GPU ou des processeurs puissants. Les outils comme Llamafile et GPT4ALL sont conçus pour fonctionner sur des machines équipées de puces M1/M2 d’Apple ou de processeurs Intel/AMD compatibles avec des technologies d’inférence telles que Vulkan.
    2. Performance et rapidité : Bien que ces outils permettent de garder les données hors des serveurs cloud, ils peuvent être moins performants que les LLMs basés sur des serveurs distants. Par exemple, l’outil Ollama propose une solution locale pour exécuter des modèles LLM sans API, mais nécessite une configuration matérielle robuste pour offrir des résultats optimaux.
    3. Personnalisation et Fine-tuning : Les modèles locaux permettent également une plus grande flexibilité en matière de personnalisation. Les utilisateurs peuvent affiner les modèles pour des tâches spécifiques en ajustant des paramètres comme la longueur des tokens ou la température. Des outils comme Jan et LLaMa.cpp offrent des options de personnalisation poussées, permettant aux développeurs de maximiser l’efficacité des modèles dans des environnements spécifiques.

    Bientôt des agents AI Autonomes !

    L’utilisation d’agents AI autonomes combinant des LLMs locaux et des outils d’appel de fonctions comme les LAMs permet de créer des systèmes capables de résoudre des problèmes complexes de manière modulaire et décentralisée. Dans cette course à l’automatisation, les modèles basés sur des tokens sont devenus la nouvelle monnaie de l’économie numérique, facilitant la facturation des services IA et ouvrant la voie à une nouvelle vague d’innovation technologique.

    Avec l’intégration de fenêtres contextuelles plus longues, les LLMs locaux offrent des opportunités inédites pour traiter de grandes quantités de données et exécuter des tâches sur plusieurs étapes, comme des analyses complexes de documents ou des consultations médicales sécurisées. Cette flexibilité est particulièrement précieuse dans des environnements où la connectivité Internet est limitée, ou dans des secteurs où la sécurité des données est primordiale.

    Agents AI, LLMs et LAMs, de quoi parle t’on ?

    • Agents AI : Systèmes autonomes ou semi-autonomes capables de réaliser des tâches en interagissant avec des environnements numériques, en utilisant des modèles d’intelligence artificielle pour planifier, raisonner et appeler des outils comme des APIs ou des programmes.
    • Large Language Models (LLMs) : Modèles d’intelligence artificielle entraînés sur de grandes quantités de données textuelles pour comprendre, générer et manipuler du langage naturel. Ils sont utilisés pour répondre à des questions, rédiger des textes et effectuer des tâches conversationnelles.
    • Large Action Models (LAMs) : Modèles conçus pour transformer des instructions linguistiques en actions exécutables, permettant aux agents AI de passer de la simple génération de texte à l’exécution de tâches spécifiques, comme des appels d’API ou des requêtes de données.

    L’avènement des LLMs locaux marque un tournant dans l’économie des agents AI, où la capacité à traiter des données hors ligne et en toute sécurité devient un facteur clé de différenciation. Des outils comme LM Studio, Jan, GPT4ALL et Llamafile permettent aux entreprises de bénéficier des avantages des LLMs sans sacrifier la confidentialité ni l’efficacité.

    À mesure que les entreprises adoptent ces technologies, les tokens continuent de jouer un rôle central dans cette nouvelle économie, facilitant les transactions et définissant la valeur des services IA. Les agents AI, combinant raisonnement et appel d’outils, deviendront de plus en plus autonomes, ouvrant la voie à une révolution industrielle numérique où l’efficacité et la modularité sont au cœur de l’innovation.

    Sources :